Files
@ e23e3482a0b7
Branch filter:
Location: DA/protocols/vldb-protocols2.R - annotation
e23e3482a0b7
20.7 KiB
text/S-plus
more stuff
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 3aa4d95db0a9 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 3aa4d95db0a9 78f3a9ffe84c 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 3aa4d95db0a9 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 3aa4d95db0a9 3aa4d95db0a9 3aa4d95db0a9 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 78f3a9ffe84c 3aa4d95db0a9 78f3a9ffe84c 3aa4d95db0a9 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 e23e3482a0b7 | library(dplyr)
library(ggplot2)
library(ggthemes)
library(ggrepel)
library(stringr)
theme <- theme_few(base_size = 24) +
theme(axis.title.y=element_text(vjust=0.9),
axis.title.x=element_text(vjust=-0.1),
axis.ticks.x=element_blank(),
text=element_text(family="serif"))
read.table("11.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
sysnames <- c("mariadb-default"="MySQL", "mariadb-compress"="MySQL+C", "oracle-default"="DBMS X", "postgres-default" = "PostgreSQL", "db2-default" = "DB2", "monetdb-default"="MonetDB", "hbase-default" = "HBase", "hive-default" = "Hive", "mongodb-default" = "MongoDB")
dd3 %>% filter(network=="unlimited", protocol == "native", timeout != 1, system %in% c("hive-default", "hbase-default", "mariadb-default", "mariadb-compress", "db2-default", "oracle-default", "postgres-default", "monetdb-default", "mongodb-default"), tuple %in% c(1, 1000000)) %>% mutate(system=sysnames[system]) %>% select(system, tuple, time, bytes) %>% group_by(system, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- dd4 %>% filter(tuple==1000000) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by="system") %>% mutate(tuple_time_ms=((time_1m-time_1)/1000000)*1000, tuple_bytes=(bytes_1m-bytes_1)/1000000)
pdf("total-time.pdf", width=10, height=5)
ggplot(dd4 %>% filter(tuple == 1000000), aes(y=time_mean, x=reorder(system, -time_mean), label=round(time_mean, 1))) + geom_bar(stat="identity", position="dodge", width=.5) + geom_errorbar(aes(ymax = time_mean + time_se, ymin=time_mean - time_se), width=0.2, size=1) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.8, family="serif") + scale_y_continuous(limits=c(0, 31))
dev.off()
pdf("total-bytes.pdf", width=10, height=5)
ggplot(dd4 %>% filter(tuple == 1000000) %>% mutate(bytes_mean_mb=(bytes_mean/1024/1024)), aes(y=bytes_mean_mb, x=reorder(system, -bytes_mean_mb), label=round(bytes_mean_mb, 2))) + geom_hline(yintercept=120, linetype="dashed") + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Bytes transferred (MB)") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, 400))
dev.off()
# pdf("time-per-tuple.pdf", width=10, height=5)
# ggplot(dd5, aes( y=tuple_time_ms, x=reorder(system, -tuple_time_ms), label=round(tuple_time_ms, 4))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Time per tuple (ms)") + coord_flip() + guides(fill=FALSE) + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, .03))
# dev.off()
# pdf("bytes-per-tuple.pdf", width=10, height=5)
# ggplot(dd5, aes( y=tuple_bytes, x=reorder(system, -tuple_bytes), label=round(tuple_bytes))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Bytes per tuple") + coord_flip() + guides(fill=FALSE) + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, 410))
# dev.off()
# ggplot(dd5, aes(y=tuple_time_ms, x=tuple_bytes, label=system)) + geom_point() + geom_text(size=7, hjust=-.1, family="serif") + theme
read.table("13.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
ntuples <- 1000000
sysnames <- c("mariadb-default"="MySQL", "mariadb-compress"="MySQL+C", "oracle-default"="DBMS X", "postgres-default" = "PostgreSQL", "db2-default" = "DB2", "monetdb-prot9"="MonetDB", "hbase-default" = "HBase", "hive-default" = "Hive", "mongodb-default" = "MongoDB")
dd3 %>% filter(protocol == "odbc-noprint", timeout != 1, system %in% c("hive-default", "hbase-default", "mariadb-default", "mariadb-compress", "db2-default", "oracle-default", "postgres-default", "monetdb-prot9", "mongodb-default"), tuple %in% c(1, ntuples)) %>% mutate(system=sysnames[system]) %>% select(system, tuple, network, time, bytes) %>% group_by(system, tuple, network) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("system", "network"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
pdf("total-time-noprint.pdf", width=10, height=3.5)
ggplot(dd4 %>% filter(tuple == 1000000, network=="unlimited"), aes(y=time_mean, x=reorder(system, -time_mean), label=round(time_mean, 1))) + geom_hline(yintercept=0.237, linetype="dashed") + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.8, family="serif") + scale_y_continuous(limits=c(0, 6))
dev.off()
# pdf("time-per-tuple5.pdf", width=10, height=5)
# ggplot(dd5 %>% filter(network == "unlimited"), aes( y=tuple_time_ms, x=reorder(system, -tuple_time_ms), label=round(tuple_time_ms, 4))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Time per tuple (ms)") + coord_flip() + guides(fill=FALSE) + geom_text(size=7, hjust=-.2, family="serif")
# dev.off()
# pdf("time-per-tuple6.pdf", width=10, height=5)
# ggplot(dd5 %>% filter(network == "10mbitethhd"), aes( y=tuple_time_ms, x=reorder(system, -tuple_time_ms), label=round(tuple_time_ms, 4))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Time per tuple (ms)") + coord_flip() + guides(fill=FALSE) + geom_text(size=7, hjust=-.2, family="serif")
# dev.off()
# pdf("bytes-per-tuple5.pdf", width=10, height=5)
# ggplot(dd5 %>% filter(network == "unlimited"), aes( y=tuple_bytes, x=reorder(system, -tuple_bytes), label=round(tuple_bytes))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Bytes per tuple") + coord_flip() + guides(fill=FALSE) + geom_text(size=7, hjust=-.2, family="serif")
# dev.off()
# ggplot(dd5, aes( x=network, y=tuple_time_ms, fill=system)) +geom_bar(stat="identity", position="dodge", width=.5)
read.table("43.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
ntuples <- 1000000
sysnames <- c("mariadb-default"="MySQL", "mariadb-compress"="MySQL+C", "oracle-default"="DBMS X", "postgres-default" = "PostgreSQL", "db2-default" = "DB2", "monetdb-prot9"="MonetDB", "monetdb-prot10-none-none"="MonetDB++", "monetdb-prot10-snappy-none"="MonetDB++S", "hbase-default" = "HBase", "hive-default" = "Hive", "mongodb-default" = "MongoDB")
dd3 %>% filter(protocol == "odbc-noprint", timeout != 1, system %in% c("mariadb-default", "db2-default", "oracle-default", "postgres-default", "monetdb-prot9", "mariadb-compress"), tuple %in% c(1, ntuples)) %>% mutate(system=sysnames[system]) %>% select(system, tuple, throughput, latency, time, bytes) %>% group_by(system, tuple, throughput, latency) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("system", "throughput", "latency"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
pdf("latency.pdf", width=10, height=5)
ggplot(dd5 %>% filter(is.na(throughput)), aes(color=system, y=adj_time, x=latency, label=round(adj_time, 1))) + geom_line(size=1.5) + geom_point(size=3) + scale_y_log10() + scale_x_log10(breaks=c(0.1,1,10,100), limits=c(0.1, 500)) + theme + xlab("Latency (ms, log)") + ylab("Wall clock time (s, log)") + theme(legend.position = "none") + geom_text_repel(data = dd5 %>% filter(is.na(throughput), latency==100 | (system=="DBMS X" & latency==10)), aes(label = system), size = 8, nudge_x = .3, segment.color = NA, family="serif")
dev.off()
pdf("throughput.pdf", width=10, height=5)
ggplot(dd5 %>% filter(is.na(latency)), aes(color=system, y=adj_time, x=throughput, label=round(adj_time, 1))) + geom_line(size=1.5) + geom_point(size=3) + scale_y_log10() + scale_x_log10(breaks=c(10,100,1000), limits=c(10, 3500)) + theme + xlab("Throughput (Mb/s, log)") + ylab("Wall clock time (s, log)") + theme(legend.position = "none") +
geom_text_repel(data = dd5 %>% filter(is.na(latency), throughput==1000), aes(label = system), size = 8, nudge_x = .35, segment.color = NA, family="serif")
dev.off()
read.table("44.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
compnames <- c("snappy"="Sy", "xz"="XZ", "lz4" = "LZ4", "gzip" = "GZ")
dd3 %>% filter(grepl("netcat-prot-", dd3$system, fixed=T), tuple == 1000000, bin_chunksize == 100000, is.na(latency)) %>% select(bin_compress, bin_orientation, throughput, bytes, time) %>% group_by(bin_compress, bin_orientation, throughput) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) %>% mutate(bytes_mean_mb=(bytes_mean/1024/1024), bin_compress_name=ifelse(bin_compress == "", "None", compnames[bin_compress]), throughput=ifelse(is.na(throughput), "Unlimited", throughput)) -> dd4
dd4$throughput <- factor(dd4$throughput, levels=c("Unlimited", "1000", "100", "10"))
pdf("compression.pdf", width=10, height=6)
ggplot(dd4 %>% filter(bin_orientation == "col"), aes(y=time_mean, x=bytes_mean_mb, label=bin_compress_name)) + geom_point(size=3) + theme + scale_y_log10() + ylab("Wall clock time (s, log)") + xlab("Bytes transferred (MB)") + theme(legend.position = "none") + facet_wrap(~throughput) + geom_text_repel(family="serif", size=8, point.padding=unit(2,"mm"))
dev.off()
# for table
xtable::xtable(dd4 %>% filter(is.na(throughput)) %>% select(bin_compress, bin_orientation, bytes_mean) %>% mutate(bytes_mean_mb=round(bytes_mean/1024/1024,1), ratio=round(110271223/bytes_mean, 2)) %>% select(bin_compress, bin_orientation,bytes_mean_mb, ratio))
read.table("47.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
ntuples <- 10000000
sysnames <- c("monetdb-prot10-strings-none-none"="Null-Terminated", "monetdb-prot10-strings-snappy-none"="Null-Terminated + Sy","monetdb-prot10-none-none"="Fixed Witdth", "monetdb-prot10-snappy-none"="Fixed Width + Sy")
dd3 %>% filter(network=="unlimitedms-unlimitedmb/s", protocol == "odbc-noprint", timeout != 1, system %in% c(names(sysnames)), tuple %in% c(1,ntuples)) %>% mutate(system=sysnames[system]) %>% select(system, tuple, time, bytes) %>% group_by(system, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("system"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
pdf("total-time-strings-noprint.pdf", width=10, height=3)
ggplot(dd5 %>% filter(tuple.x == ntuples), aes(y=adj_time, x=reorder(system, -adj_time), label=round(adj_time, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.4, family="serif") + scale_y_continuous(limits=c(0, 4))
dev.off()
pdf("total-bytes-strings.pdf", width=10, height=3)
ggplot(dd4 %>% filter(tuple == ntuples) %>% mutate(bytes_mean_mb=(bytes_mean/1024/1024)), aes(y=bytes_mean_mb, x=reorder(system, -bytes_mean_mb), label=round(bytes_mean_mb, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Bytes transferred (MB)") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, 840))
dev.off()
sysnames <- c("monetdb-prot10-intsonly-pfor"="PFOR-DELTA", "monetdb-prot10-intsonly-none"="None","monetdb-prot10-intsonly-pfor-snappy"="PFOR + Snappy", "monetdb-prot10-intsonly-none-snappy"="Snappy")
dd3 %>% filter(network=="unlimitedms-unlimitedmb/s", protocol == "odbc-noprint", timeout != 1, system %in% c(names(sysnames)), tuple %in% c(1,ntuples)) %>% mutate(system=sysnames[system]) %>% select(system, tuple, time, bytes) %>% group_by(system, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("system"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
pdf("total-time-ints-noprint.pdf", width=10, height=3)
ggplot(dd5 %>% filter(tuple.x == ntuples), aes(y=adj_time, x=reorder(system, -adj_time), label=round(adj_time, 3))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.4, family="serif") + scale_y_continuous(limits=c(0, 1.2))
dev.off()
pdf("total-bytes-ints.pdf", width=10, height=3)
ggplot(dd4 %>% filter(tuple == ntuples) %>% mutate(bytes_mean_mb=(bytes_mean/1024/1024)), aes(y=bytes_mean_mb, x=reorder(system, -bytes_mean_mb), label=round(bytes_mean_mb, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Bytes transferred (MB)") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, 220))
dev.off()
sysnames <- c("monetdb-prot10"="New Protocol", "netcat-csv"="netcat")
dd3 %>% filter(network=="unlimitedms-unlimitedmb/s", timeout != 1, system %in% c(names(sysnames)), tuple %in% c(1,ntuples)) %>% mutate(system=sysnames[system]) %>% select(system, tuple, time, bytes) %>% group_by(system, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("system"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
pdf("total-time-shootout-noprint.pdf", width=10, height=3)
ggplot(dd5 %>% filter(tuple.x == ntuples), aes(y=adj_time, x=reorder(system, -adj_time), label=round(adj_time, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.4, family="serif") #+ scale_y_continuous(limits=c(0, 4))
dev.off()
pdf("total-bytes-shootout.pdf", width=10, height=3)
ggplot(dd4 %>% filter(tuple == ntuples) %>% mutate(bytes_mean_mb=(bytes_mean/1024/1024)), aes(y=bytes_mean_mb, x=reorder(system, -bytes_mean_mb), label=round(bytes_mean_mb, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Bytes transferred (MB)") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif") # + scale_y_continuous(limits=c(0, 840))
dev.off()
read.table("48.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
ntuples <- 1000000
dd3 %>% filter(grepl("monetdb-prot10-", dd3$system, fixed=T)) %>% mutate(system2 = gsub("monetdb-prot10-","", system, fixed=T), compression=str_split_fixed(system2, "-", 2)[,1], chunksize=as.integer(str_split_fixed(system2, "-", 2)[,2])) %>% filter(timeout != 1, tuple %in% c(1,ntuples)) %>% select(compression, chunksize, tuple, time, bytes) %>% group_by(compression, chunksize, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("compression", "chunksize"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
dd5 %>% select(compression, chunksize, adj_time, adj_bytes) -> dd6
print(xtable::xtable(dd6 %>% filter(compression=="snappy")%>% full_join(dd6 %>% filter(compression =="none"), by="chunksize") %>% select(chunksize, time_uncomp=adj_time.y, bytes_uncom=adj_bytes.y, time_snappy=adj_time.x, bytes_snappy=adj_bytes.x) %>% mutate(ratio=round(bytes_uncom/bytes_snappy, 2), time_uncomp=round(time_uncomp, 2), time_snappy=round(time_snappy, 2), bytes_uncom=round(bytes_uncom/1024/1024, 1)) %>% select(chunksize, time_uncomp, time_snappy, bytes_uncom, ratio)), include.rownames=FALSE)
# ggplot(dd5, aes(y=adj_time, x=chunksize/1024, color=compression)) + theme + xlab("Chunk Size (KB)") + ylab("Wall clock time (s)") + geom_line() + geom_point() + scale_x_log10()
# ggplot(dd5, aes(y=adj_bytes/1024, x=chunksize/1024, color=compression)) + theme + xlab("Chunk Size (KB)") + ylab("Data transferred (KB)") + geom_line() + geom_point() + scale_x_log10()
read.table("49.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
ntuples <- 1000000
dd3 %>% filter(grepl("monetdb-prot10-", dd3$system, fixed=T)) %>% mutate(system2 = gsub("monetdb-prot10-","", system, fixed=T), compression=str_split_fixed(system2, "-", 2)[,1], stringmethod=str_split_fixed(system2, "-", 2)[,2]) %>% filter(timeout != 1, tuple %in% c(1,ntuples)) %>% select(compression, stringmethod, tuple, time, bytes) %>% group_by(compression, stringmethod, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("compression", "stringmethod"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1)
# ggplot(dd5 %>% filter(compression == "snappy"), aes(y=adj_time, x=reorder(stringmethod, -adj_time), label=round(adj_time, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif")
# ggplot(dd5 %>% filter(compression == "snappy"), aes(y=adj_bytes, x=reorder(stringmethod, -adj_bytes), label=round(adj_bytes, 2))) + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif")
dd5 %>% select(compression, stringmethod, adj_time, adj_bytes) -> dd6
print(xtable::xtable(dd6 %>% filter(compression=="snappy")%>% full_join(dd6 %>% filter(compression =="none"), by="stringmethod") %>% select(stringmethod, time_uncomp=adj_time.y, bytes_uncom=adj_bytes.y, time_snappy=adj_time.x, bytes_snappy=adj_bytes.x) %>% mutate(ratio=round(bytes_uncom/bytes_snappy, 2), time_uncomp=round(time_uncomp, 2), time_snappy=round(time_snappy, 2), bytes_uncom=round(bytes_uncom/1024/1024, 1)) %>% select(stringmethod, time_uncomp, time_snappy, bytes_uncom, ratio)), include.rownames=FALSE)
sysnames <- c("mariadb-default"="MySQL", "mariadb-compress"="MySQL+C", "postgres-default" = "PostgreSQL", "db2-default" = "DB2", "monetdb-prot10"="MonetDB++", "monetdb-prot10-snappy"="MonetDB++Sy", "netcat-csv"= "netcat")
read.table("51.csv", header=T, sep=",", stringsAsFactors=F, na.strings="-1") -> dd3
ntuples <- 10000000
dd3 %>% filter(system %in% c(names(sysnames)), timeout != 1, tuple %in% c(1,ntuples)) %>% mutate(system=sysnames[system]) %>% select(system, network, tuple, time, bytes) %>% group_by(system, network, tuple) %>% summarise_each(funs(mean,sd,se=sd(.)/sqrt(n()))) -> dd4
dd5 <- as.data.frame(dd4 %>% filter(tuple==ntuples) %>% rename(time_1m=time_mean, bytes_1m=bytes_mean) %>% left_join(dd4 %>% filter(tuple == 1) %>% rename(time_1=time_mean, bytes_1=bytes_mean), by=c("system", "network"))) %>% mutate(tuple_time_ms=((time_1m-time_1)/ntuples)*1000, tuple_bytes=(bytes_1m-bytes_1)/ntuples, adj_time= time_1m-time_1, adj_bytes=bytes_1m-bytes_1) %>% select(system, network, adj_time, adj_bytes)
pdf("10m-final-time-unlimited.pdf", width=10, height=3)
ggplot(dd5 %>% filter(network=="unlimited", system!="netcat"), aes(y=adj_time, x=reorder(system, -adj_time), label=round(adj_time, 1))) + geom_hline(yintercept=1.634335, linetype="dashed") + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, 90))
dev.off()
pdf("10m-final-time-slownet.pdf", width=10, height=3)
ggplot(dd5 %>% filter(network=="10mbitethhd", system!="netcat"), aes(y=adj_time, x=reorder(system, -adj_time), label=round(adj_time, 1))) + geom_hline(yintercept=1014.811853, linetype="dashed") + geom_bar(stat="identity", position="dodge", width=.5) + theme + xlab("") + ylab("Wall clock time (s)") + coord_flip() + geom_text(size=7, hjust=-.2, family="serif") + scale_y_continuous(limits=c(0, 2000))
dev.off()
|