library(survey) options(na.action="na.pass") # from survey package, R/surveyrep.R # slightly patched to use numeric NAs in matrices and avoid over-decorating result svymean <- function(x,design, na.rm=FALSE, rho=NULL, return.replicates=FALSE,deff=FALSE,...) { # if (!exists(".Generic",inherits=FALSE)) # .Deprecated("svymean") if (!inherits(design,"svyrep.design")) stop("design is not a replicate survey design") if (inherits(x,"formula")){ ## do the right thing with factors mf<-model.frame(x,design$variables,na.action=na.pass) xx<-lapply(attr(terms(x),"variables")[-1], function(tt) model.matrix(eval(bquote(~0+.(tt))),mf)) cols<-sapply(xx,NCOL) x<-matrix(data=as.numeric(NA), nrow=NROW(xx[[1]]),ncol=sum(cols)) scols<-c(0,cumsum(cols)) for(i in 1:length(xx)){ x[,scols[i]+1:cols[i]]<-xx[[i]] } colnames(x)<-do.call("c",lapply(xx,colnames)) } else { if(typeof(x) %in% c("expression","symbol")) x<-eval(x, design$variables) else { if(is.data.frame(x) && any(sapply(x,is.factor))){ xx<-lapply(x, function(xi) {if (is.factor(xi)) 0+(outer(xi,levels(xi),"==")) else xi}) cols<-sapply(xx,NCOL) scols<-c(0,cumsum(cols)) cn<-character(sum(cols)) for(i in 1:length(xx)) cn[scols[i]+1:cols[i]]<-paste(names(x)[i],levels(x[[i]]),sep="") x<-matrix(nrow=NROW(xx[[1]]),ncol=sum(cols)) for(i in 1:length(xx)){ x[,scols[i]+1:cols[i]]<-xx[[i]] } colnames(x)<-cn } } } x<-as.matrix(x) if (na.rm){ nas<-rowSums(is.na(x)) design<-design[nas==0,] x<-x[nas==0,,drop=FALSE] } wts<-design$repweights scale<-design$scale rscales<-design$rscales if (!is.null(rho)) .NotYetUsed("rho") if (!design$combined.weights) pw<-design$pweights else pw<-1 rval<-colSums(design$pweights*x)/sum(design$pweights) if (getOption("survey.drop.replicates") && !is.null(design$selfrep) && all(design$selfrep)){ v<-matrix(0,length(rval),length(rval)) repmeans<-NULL } else { if (inherits(wts, "repweights_compressed")){ repmeans<-matrix(ncol=NCOL(x), nrow=ncol(wts$weights)) for(i in 1:ncol(wts$weights)){ wi<-wts$weights[wts$index,i] repmeans[i,]<-t(colSums(wi*x*pw)/sum(pw*wi)) } } else { repmeans<-matrix(data=as.numeric(NA), ncol=NCOL(x), nrow=ncol(wts)) for(i in 1:ncol(wts)){ repmeans[i,]<-t(colSums(wts[,i]*x*pw)/sum(pw*wts[,i])) } } repmeans<-drop(repmeans) v <- svrVar(repmeans, scale, rscales,mse=design$mse, coef=rval) } # this is easy to fix, but for now... return(v) attr(rval,"var") <-v attr(rval, "statistic")<-"mean" if (return.replicates){ attr(repmeans,"scale")<-design$scale attr(repmeans,"rscales")<-design$rscales attr(repmeans,"mse")<-design$mse rval<-list(mean=rval, replicates=repmeans) } if (is.character(deff) || deff){ nobs<-length(design$pweights) npop<-sum(design$pweights) vsrs<-unclass(svyvar(x,design,na.rm=na.rm, return.replicates=FALSE,estimate.only=TRUE))/length(design$pweights) if (deff!="replace") vsrs<-vsrs*(npop-nobs)/npop attr(rval,"deff") <- v/vsrs } class(rval)<-"svrepstat" rval } source("harness.R") for (s in c("alabama", "california", "acs3yr" )) { svydata <- readRDS(paste0(s,".rds")) names(svydata) <- tolower(names(svydata)) print("loaded") svydsgn <- svrepdesign( weight = ~pwgtp , repweights = 'pwgtp[1-9]' , scale = 4 / 80 , rscales = rep( 1 , 80 ) , mse = TRUE , data = svydata) print("initialized") for (r in 1:5) { timing <- system.time({ agep <- svymean(~agep, svydsgn, se=TRUE) relp <- svymean(~adjinc, svydsgn, se=TRUE) print(agep) print(relp) })[[3]] log.result("survey", sys, conf, s, r, timing) clearResultRecycler() } }