Changeset - 200c37371db5
[Not reviewed]
default
0 1 0
Roeland Merks - 11 years ago 2014-05-01 16:01:14
merks@cwi.nl
Minor bugfix in RandomlyLoopNodes and RandomLoopCells (unused code) revealed after recent compilation on Linux
1 file changed with 2 insertions and 2 deletions:
0 comments (0 inline, 0 general)
src/mesh.h
Show inline comments
 
/*
 
 *
 
 *  $Id$
 
 *
 
 *  This file is part of the Virtual Leaf.
 
 *
 
 *  VirtualLeaf is free software: you can redistribute it and/or modify
 
 *  it under the terms of the GNU General Public License as published by
 
 *  the Free Software Foundation, either version 3 of the License, or
 
 *  (at your option) any later version.
 
 *
 
 *  VirtualLeaf is distributed in the hope that it will be useful,
 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
 *  GNU General Public License for more details.
 
 *
 
 *  You should have received a copy of the GNU General Public License
 
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
 *
 
 *  Copyright 2010 Roeland Merks.
 
 *
 
 */
 

	
 

	
 
// Cell derives from Vector, where Vector is simply used as a Vertex
 

	
 
#ifndef _MESH_H_
 
#define _MESH_H_
 

	
 
#include <vector>
 
#include <algorithm>
 
#include <queue>
 
#include <iterator>
 
#include <functional>
 
#ifdef QTGRAPHICS
 
#include <QGraphicsScene>
 
#endif
 
#include "cell.h"
 
#include "node.h"
 
#include "simplugin.h"
 
#include <QVector>
 
#include <QPair>
 
#include <QDebug>
 
#include <QTextStream>
 

	
 
using namespace std;
 
// new queue which rejects duplicate elements
 
template<class T, class C = deque<T> > class unique_queue : public queue<T,C> {
 

	
 
 public:
 
 typedef typename C::value_type value_type;
 
 // reimplements push: reject element if it exists already
 
 void push(const value_type &x) {
 
   if (find (queue<T,C>::c.begin(),queue<T,C>::c.end(),x)==queue<T,C>::c.end()) {
 
     queue<T,C>::c.push_back(x);
 
   }
 
 }
 
 void clear(void) {
 
   queue<T,C>::c.clear();
 
 }
 
};
 

	
 
template<class P> P& deref_ptr ( P *obj) { return *obj; }
 

	
 

	
 
class Mesh {
 

	
 
  friend class Cell;
 
  friend class Node;
 
  friend class FigureEditor;
 

	
 
 public: 
 
  Mesh(void) {
 
    // Make sure the reserved value is large enough if a cell is added
 
    // in "Divide" when the capacity is insufficient, "cells" might be
 
    // relocated including the current Cell (i.e. the value of *this)
 
    // calling "Mesh::IncreaseCapacityIfNecessary" (from another
 
    // object than Cell, e.g. Mesh) before entering Divide will solve
 
    // this issue (solved now).
 
    cells.reserve(2);
 
    nodes.reserve(500);
 

	
 
    time = 0.;
 
    plugin = 0;
 
    boundary_polygon=0;
 

	
 
  };
 
  ~Mesh(void) {
 
    if (boundary_polygon) {
 
      delete boundary_polygon;
 
      boundary_polygon=0;
 
    }
 
  };
 

	
 
  void Clean(void);
 
  Cell &EllipticCell(double xc, double yc, double ra, double rb, int nnodes=10, double rotation=0);
 
  Cell &CircularCell(double xc, double yc, double r, int nnodes=10) {
 
    return EllipticCell(xc, yc, r, r, nnodes, 0);
 
  }
 
  Cell &LeafPrimordium(int n, double pet_length);
 
  Cell &LeafPrimordium2(int n);
 
  Cell *RectangularCell(const Vector ll, const Vector ur, double rotation = 0);
 
  void CellFiles(const Vector ll, const Vector ur);
 

	
 
  inline Cell &getCell(int i) {
 
    if ((unsigned)i<cells.size())
 
      return *cells[i];
 
    else {
 
#ifdef QDEBUG
 
      qDebug() << i << endl;
 
      qDebug() << "size is " << cells.size() << endl;
 
#endif
 
      abort();
 
    }
 
  }
 

	
 
  inline Node &getNode(int i) {
 
    return *nodes[i];    
 
  }
 

	
 
  //double Diffusion(void);
 
  inline int size(void) {
 
    return cells.size();
 
  }
 
  inline int nnodes(void) {
 
    return nodes.size();
 
  }
 

	
 
  template<class Op> void LoopCells(Op f) {
 
    for (vector <Cell *>::iterator i=cells.begin();
 
	 i!=cells.end();
 
	 i++) {
 
      f(**i);
 
    }
 
  }
 

	
 
  template<class Op> void LoopWalls(Op f) {
 
    for (list <Wall *>::iterator i=walls.begin();
 
	 i!=walls.end();
 
	 i++) {
 
      f(**i);
 
    }
 
  }
 

	
 
  // if the amount of cells might increase, during looping, use this template
 
  template<class Op> void LoopCurrentCells(Op f) {
 
    vector<Cell *> current_cells = cells;
 
    for (vector <Cell *>::iterator i=current_cells.begin();
 
	 i!=current_cells.end();
 
	 i++) {
 
      f(**i);
 

	
 
    }
 
  }
 

	
 
  template<class Op> void LoopNodes(Op f) {
 
    for (vector<Node *>::iterator i=nodes.begin();
 
	 i!=nodes.end();
 
	 i++) {
 
      f(**i); 
 
    }
 
  }
 

	
 
  template<class Op> void RandomlyLoopNodes(Op f) {
 

	
 
    MyUrand r(shuffled_nodes.size());
 
    random_shuffle(shuffled_nodes.begin(),shuffled_nodes.end(),r);
 

	
 
    for (vector<Node *>::const_iterator i=shuffled_nodes.begin();
 
	 i!=shuffled_nodes.end();
 
	 i++) {
 
      f(*shuffled_nodes[*i]);
 
      f(*i);
 
    }
 
  }
 

	
 
  template<class Op> void RandomlyLoopCells(Op f) {
 

	
 
    MyUrand r(shuffled_cells.size());
 
    random_shuffle(shuffled_cells.begin(),shuffled_cells.end(),r);
 

	
 
    for (vector<Cell *>::const_iterator i=shuffled_cells.begin();
 
	 i!=shuffled_cells.end();
 
	 i++) {
 
      f(*shuffled_cells[*i]);
 
      f(*i);
 
    }
 
  }
 

	
 
  template<class Op1, class Op2> void LoopCells(Op1 f, Op2 &g) {
 
    for (vector<Cell *>::iterator i=cells.begin();
 
	 i!=cells.end();
 
	 i++) {
 
      f(**i,g); 
 
    }
 
  }
 

	
 
  template<class Op1, class Op2, class Op3> void LoopCells(Op1 f, Op2 &g, Op3 &h) {
 
    for (vector<Cell *>::iterator i=cells.begin();
 
	 i!=cells.end();
 
	 i++) {
 
      f(**i,g,h); 
 
    }
 
  }
 

	
 
  void DoCellHouseKeeping(void) {
 
    vector<Cell *> current_cells = cells;
 
    for (vector<Cell *>::iterator i = current_cells.begin();
 
	 i != current_cells.end();
 
	 i ++) {
 
      plugin->CellHouseKeeping(*i);
 

	
 
      // Call functions of Cell that cannot be called from CellBase, including Division
 
      if ((*i)->flag_for_divide) {
 
	if ((*i)->division_axis) {
 
	  (*i)->DivideOverAxis(*(*i)->division_axis);
 
	  delete (*i)->division_axis;
 
	  (*i)->division_axis = 0;
 
	} else {
 
	  (*i)->Divide();
 
	}
 
	(*i)->flag_for_divide=false;
 
      }
 
    }
 
  }
 

	
 
  // Apply "f" to cell i
 
  // i.e. this is an adapter which allows you to call a function
 
  // operating on Cell on its numeric index index
 
  template<class Op> void cell_index_adapter(Op f,int i) {
 
    f(cells[i]);
 
  }
 

	
 
  double DisplaceNodes(void);
 

	
 
  void BoundingBox(Vector &LowerLeft, Vector &UpperRight);
 
  int NEqs(void) {     int nwalls = walls.size();
 
    int ncells =cells.size();
 
    int nchems = Cell::NChem();
 

	
 
    // two eqs per chemical for each walls, and one eq per chemical for each cell
 
    // This is for generality. For a specific model you may optimize
 
    // this by removing superfluous (empty) equations.
 
    int neqs = 2 * nwalls * nchems + ncells * nchems;
 

	
 
    return neqs;
 
  }
 
  void IncreaseCellCapacityIfNecessary(void) {
 

	
 
    return;
 
    // cerr << "Entering Mesh::IncreaseCellCapacityIfNecessary \n";
 
    // make sure we always have enough space 
 
    // to have each cell divide at least once
 
    //
 
    // Note that we must do this, because Cell::Divide pushes a new Cell
 
    // onto Mesh::cells. As a result, Mesh::cells might be relocated 
 
    // if we are _within_ a Cell object: i.e. pointer "this" will be changed!!
 
    // 
 
    // An alternative solution could be to make "Mesh::cells" a list,
 
    // but this won't work because we need random access for 
 
    // the Monte Carlo algorithm.
 

	
 
    if (2*cells.size()>cells.capacity()) {
 
      cerr << "Increasing capacity to "  << 2*cells.capacity() << endl;
 
      cerr << "Current capacity is " << cells.capacity() << endl;
 
      cells.reserve(cells.capacity()*2);
 
    }
 
  }
 

	
 
  void ReserveMoreCells(int n) {
 
    if (nodes.size()+n>nodes.capacity()) {
 
      nodes.reserve(size()+n);
 
    }
 
  }
 
  double Area(void);
 
  double MeanArea(void) {
 
    double sum=0.;
 
    for (vector<Cell *>::const_iterator i=cells.begin();
 
	 i!=cells.end();
 
	 i++) {
 
      sum+=(*i)->Area();
 
    }
 
    return sum/(double)NCells();
 
  }
 

	
 
  void SetBaseArea(void);
 
  int NCells(void) const {
 
    return cells.size();
 
  }
 
  inline int NNodes(void) const {
 
    return nodes.size();
 
  }
 
  void PrintQueue(ostream &os) {
 
    while (!node_insertion_queue.empty()) {
 
      os << node_insertion_queue.front() << endl;
 
      node_insertion_queue.pop();
 
    }
 
  }
 

	
 
  void InsertNodes(void) {
 
    // insert the nodes in the insertion queue
 
    while (!node_insertion_queue.empty()) {
 

	
 
      //cerr << node_insertion_queue.front() << endl;
 
      InsertNode(node_insertion_queue.front());
 
      node_insertion_queue.pop();
 
    }
 

	
 
  }
 

	
 
  void Clear(); 
 

	
 
  void ReactDiffuse( double delta_t = 1 );
 
  double SumChemical(int ch);
 
  void SetChemical(int ch, double value) {
 
    for (vector<Cell *>::iterator c=cells.begin();
 
	 c!=cells.end();
 
	 c++) {
 
      (*c)->chem[ch]=value;
 
    }
 
  }
 

	
 
  // used for interacing with ODE-solvers (e.g. NRCRungeKutta)
 
  void setValues(double x, double *y);
 
  double *getValues(int *neqs);
 
  void Derivatives(double *derivs);
 
#ifdef QTGRAPHICS
 
  inline void DrawBoundary(QGraphicsScene *c) {
 
    boundary_polygon->Draw(c);
 
  }
 
  void DrawNodes(QGraphicsScene *c) const;
 

	
 
#endif
 
  double max_chem;
 

	
 
  void XMLSave(const char *docname, xmlNode *settings=0) const;
 
  void XMLRead(const char *docname, xmlNode **settings=0, bool geometry = true, bool pars = true, bool simtime = true);
 
  void XMLReadPars(const xmlNode * root_node);
 
  void XMLReadGeometry(const xmlNode *root_node);
 
  void XMLReadSimtime(const xmlNode *root_node);
 
  void XMLReadNodes(xmlNode *cur);
 
  void XMLReadCells(xmlNode *cur);
 
  void XMLParseTree(const xmlNode * root_node);
 
  void XMLReadWalls(xmlNode *cur, vector<Wall *> *tmp_cells);
 
  void XMLReadWallsToCells(xmlNode *root, vector<Wall *> *tmp_walls);
 
  void XMLReadNodeSets(xmlNode *root);
 
  void XMLReadNodeSetsToNodes(xmlNode *root);
 
  void PerturbChem(int chemnum, double range);
 
  void CleanUpCellNodeLists(void);
 
  void CleanUpWalls(void);
 
  void CutAwayBelowLine( Vector startpoint, Vector endpoint );
 
  void CutAwaySAM(void);
 
  void RepairBoundaryPolygon(void);
 
  void Rotate(double angle, Vector center);
 
  void PrintWallList( void );
 
  void TestIllegalWalls(void);
 
  Vector FirstConcMoment(int chem);
 
  inline Vector Centroid(void) {
 
    return boundary_polygon->Centroid();
 
  }
 

	
 
  inline Vector Offset(void) {
 
    return boundary_polygon->Offset();
 
  }
 

	
 
  inline double Factor(void) {
 
    return boundary_polygon->Factor();
 
  }
 

	
 
  void DeleteLooseWalls(void);
 
  void FitLeafToCanvas(double width, double height);
 
  void AddNodeSet(NodeSet *node_set) {
 
    node_sets.push_back(node_set);
 
  }
 

	
 
  void CleanChemicals(const vector<double> &clean_chem);
 
  void CleanTransporters(const vector<double> &clean_transporters);
 
  void RandomizeChemicals(const vector<double> &max_chem, const vector<double> &max_transporters);
0 comments (0 inline, 0 general)