Changeset - c8fbdf1e4153
[Not reviewed]
default
0 7 0
Michael Guravage - 15 years ago 2010-05-28 13:53:39
michael.guravage@cwi.nl
Roeland's recent improvements - especially a more robust Mesh::Derivatives().

--
user: Michael Guravage <michael.guravage@cwi.nl>
branch 'default'
changed src/VirtualLeaf.pro
changed src/build_models/plugin_test.pro
changed src/cell.cpp
changed src/cellbase.cpp
changed src/cellbase.h
changed src/mesh.cpp
changed src/mesh.h
7 files changed with 36 insertions and 6 deletions:
0 comments (0 inline, 0 general)
src/VirtualLeaf.pro
Show inline comments
 
#
 
#  $Id$
 
#
 
#  This file is part of the Virtual Leaf.
 
#
 
#  The Virtual Leaf is free software: you can redistribute it and/or modify
 
#  it under the terms of the GNU General Public License as published by
 
#  the Free Software Foundation, either version 3 of the License, or
 
#  (at your option) any later version.
 
#
 
#  The Virtual Leaf is distributed in the hope that it will be useful,
 
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
#  GNU General Public License for more details.
 
#
 
#  You should have received a copy of the GNU General Public License
 
#  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
#
 
#  Copyright 2010 Roeland Merks.
 
#
 

	
 
CONFIG -= release
 
CONFIG += debug
 
CONFIG += release
 
CONFIG -= debug
 
CONFIG += qt
 

	
 
QMAKE_CXXFLAGS += -fexceptions
 
QMAKE_CXXFLAGS_DEBUG += -g3
 
QMAKE_CXXFLAGS_DEBUG += -DQDEBUG
 

	
 
#REACTIONS = reactions_auxin_growth.h 
 
#REACTIONS = reactions_meinhardt.h
 
#REACTIONS = reactions_pce_growth.h
 
DEFINES += QTGRAPHICS
 
DEFINES += REACTIONS_HEADER=$${REACTIONS}
 
DEFINES += REACTIONS_HEADER_STRING=\"$${REACTIONS}\"
 
DEFINES += FLEMING
 

	
 
PERLDIR = ./perl
 
BINDIR = ../bin
 
DESTDIR = $$BINDIR
 
TARGET = VirtualLeaf
 
TEMPLATE = app
 
PARTMPL = $${TARGET}par.tmpl
 
MAINSRC = $${TARGET}.cpp
 
QT -= network sql xml
 
QT += qt3support
 

	
 
!win32 {
 
 GRAPHICS = qt #qwt
 
}
 

	
 
win32 {
 
 CONFIG += console
 
 LIBXML2DIR = C:\libxml2
 
 LIBICONVDIR = C:\libiconv
 
 LIBZDIR = C:\libz
 
 system(DEL parameter.cpp parameter.h) 
 
 GRAPHICS = qt 
 
 RC_FILE = VirtualLeaf.rc
 
 QMAKE_CXXFLAGS += -DLIBXML_STATIC
 
 QMAKE_CXXFLAGS += -I$${LIBXML2DIR}\include -I$${LIBICONVDIR}\include -I$${LIBZDIR}\include
 
 QMAKE_POST_LINK = "\
 
  C:\Bin\cp release\VirtualLeaf.exe \
 
  C:\Qt\4.5.3\bin\Qt3Support4.dll \
 
  C:\Qt\4.5.3\bin\QtGui4.dll \
 
  C:\Qt\4.5.3\bin\QtSql4.dll \
 
  C:\Qt\4.5.3\bin\QtXml4.dll \
 
  C:\Qt\4.5.3\bin\QtCore4.dll \
 
  C:\Qt\4.5.3\bin\QtNetwork4.dll \
 
  C:\Qt\4.5.3\bin\QtSvg4.dll \
 
  C:\bin\iconv.dll \
 
  C:\bin\libxml2.dll \
 
  C:\bin\zlib1.dll \
 
  C:\MinGW\bin\mingwm10.dll \
 
  $${DESTDIR}"
 
 LIBS += -L$${LIBXML2DIR}\lib -lxml2 -L$${LIBICONVDIR}\lib -L$${LIBZDIR}\lib  -lz -lm -lwsock32 -liconv
 
}
 

	
 
# Application icons
 
macx {
 
 ICON = leaficon.icns
 
 # make sure that the executable can find the libqwt share library
 
 QMAKE_POST_LINK = "mkdir $${DESTDIR}/$${TARGET}.app/Contents/Frameworks; \
 
  cp /usr/local/qwt/lib/libqwt.dylib $${DESTDIR}/$${TARGET}.app/Contents/Frameworks/.; \
 
  #install_name_tool -change libqwt.5.dylib $$QWTDIR/lib/libqwt.dylib $${DESTDIR}/$${TARGET}.app/Contents/MacOS/$${TARGET}; \
 
  install_name_tool -id @executable_path/../Frameworks/libqwt.dylib $${DESTDIR}/$${TARGET}.app/Contents/Frameworks/libqwt.dylib; \
 
  install_name_tool -change libqwt.5.dylib @executable_path/../Frameworks/libqwt.dylib $${DESTDIR}/$${TARGET}.app/Contents/MacOS/$${TARGET};\
 
  cp leaficon.icns $${DESTDIR}/$${TARGET}.app; "
 
}
 

	
 
macx:release {
 
 LIBS+= -dead_strip
 
}
 

	
 
unix {
 
 system(rm -f parameter.cpp parameter.h) 
 
 CC = /usr/bin/gcc 
 
 QWTDIR = /ufs/guravage/opt/qwt-5.2.1-svn
 
 QMAKE_LIBDIR += $$QWTDIR/lib 
 
 QMAKE_CXXFLAGS += -fPIC -I/usr/include/libxml2
 
 QMAKE_LFLAGS += -fPIC
 
 LIBS += -lxml2 -lz -lm 
 
}
 

	
 
system(perl $$PERLDIR/make_parameter_source.pl $$PARTMPL)
 
system(perl $$PERLDIR/make_pardialog_source.pl $$PARTMPL)
 
#system(perl $$PERLDIR/make_xmlwritecode.pl -h $$REACTIONS)
 

	
 
# Input
 
HEADERS += \
 
 apoplastitem.h \
 
 canvas.h \
 
 cellbase.h \
 
 cell.h \
 
 cellitem.h \
 
 forwardeuler.h \
 
 infobar.h \
 
 mainbase.h \
 
 mainbase.h \
 
 matrix.h \
 
 mesh.h \
 
 miscq.h \
 
 modelcatalogue.h \
 
 Neighbor.h \
 
 node.h \
 
 nodeitem.h \
 
 nodeset.h \
 
 OptionFileDialog.h \
 
 output.h \
 
 parameter.h \
 
 pardialog.h \
 
 parse.h \
 
 pi.h \
 
 qcanvasarrow.h \
 
 random.h \
 
 rungekutta.h \
 
 simitembase.h \
 
 simplugin.h \
 
 sqr.h \
 
 tiny.h \
 
 transporterdialog.h \
 
 UniqueMessage.h \
 
 vector.h \
 
 wallbase.h \
 
 wall.h \
 
 wallitem.h \
 
 warning.h \
 
 xmlwrite.h \
 
 $${PARTMPL}
 

	
 
SOURCES += \
 
 apoplastitem.cpp \
 
 canvas.cpp \
 
 cellbase.cpp \
 
 cell.cpp \
 
 cellitem.cpp \
 
 forwardeuler.cpp \
 
 mainbase.cpp \
 
 matrix.cpp \
 
 mesh.cpp \
 
 miscq.cpp \
 
 modelcatalogue.cpp \
 
 Neighbor.cpp \
 
 node.cpp \
 
 nodeitem.cpp \
 
 nodeset.cpp \
 
 OptionFileDialog.cpp \
 
 output.cpp \
 
 parameter.cpp \
 
 pardialog.cpp \
 
 parse.cpp \
 
 random.cpp \
 
 rungekutta.cpp \
 
 simitembase.cpp \
 
 transporterdialog.cpp \
 
 UniqueMessage.cpp \
 
 vector.cpp \
 
 wallbase.cpp \
 
 wall.cpp \
 
 wallitem.cpp \
 
 warning.cpp \
 
 xmlwritecode.cpp \
 
 xmlwrite.cpp \
 
 $$MAINSRC
 

	
 
contains( TARGET, leaf_fleming ) {
 
 DEFINES += FLEMING	
 
}
 

	
 
contains(GRAPHICS, qwt) {
 
 #macx:LIBS += -L$$QWTDIR/lib -lqwt
 
 #win32:LIBS += -L$$QWTDIR/lib -lqwt5
 
 #LIBS += -L$$QWTDIR/lib -lqwt
 
 INCLUDEPATH += $$QWTDIR/include
 
 DEFINES += HAVE_QWT
 
 HEADERS += data_plot.h
 
 SOURCES += data_plot.cpp
 
}
 

	
 
contains( GRAPHICS, qt ) {
 
 message( "Building Qt executable" )
 
 QMAKE_CXXFLAGS += -DQTGRAPHICS # -fpermissive
 
}
 

	
 
contains( GRAPHICS, xfig ) {
 
 message("Building Xfig executable (background runnable).")
 
 QMAKE_CXXFLAGS += -DXFIGGRAPHICS
 
}
 

	
 
contains( GRAPHICS, x11 ) {
 
 !unix {
 
  error("X11 graphics only available on Unix systems.")
 
 }
 
 message("Building X11 executable")
 
 SOURCES += x11graph.cpp
 
 HEADERS += x11graph.h
 
 QMAKE_CXXFLAGS += -DX11GRAPHICS
 
 CONFIG -= qt
 
 CONFIG += x11
 
 unix:LIBS += -lpng
 
}
 

	
 
# finis
src/build_models/plugin_test.pro
Show inline comments
 
#
 
# $Id$
 
#
 
#  This file is part of the Virtual Leaf.
 
#
 
#  The Virtual Leaf is free software: you can redistribute it and/or modify
 
#  it under the terms of the GNU General Public License as published by
 
#  the Free Software Foundation, either version 3 of the License, or
 
#  (at your option) any later version.
 
#
 
#  The Virtual Leaf is distributed in the hope that it will be useful,
 
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
#  GNU General Public License for more details.
 
#
 
#  You should have received a copy of the GNU General Public License
 
#  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
#
 
#  Copyright 2010 Roeland Merks.
 
#
 

	
 

	
 
CONFIG += release
 
CONFIG -= debug
 
CONFIG += plugin
 

	
 
BINDIR = ../../bin
 
DEFINES = QTGRAPHICS # VLEAFPLUGIN
 
DESTDIR = $${BINDIR}/models
 
TARGET = test
 
HEADERS = ../simplugin.h $${TARGET}plugin.h  
 
QMAKE_CXXFLAGS += -fexceptions -I..
 
QMAKE_CXXFLAGS_DEBUG += -g3
 
QMAKE_CXXFLAGS_DEBUG += -DQDEBUG
 

	
 
QT += qt3support
 
SOURCES = $${TARGET}plugin.cpp
 
TEMPLATE = lib 
 

	
 
unix {
 
 LIBS += -Llib -lvleaf
 
 QMAKE_CXXFLAGS += -fPIC -I/usr/include/libxml2
 
 QMAKE_LFLAGS += -fPIC
 
}
 

	
 
win32 {
 
 LIBXML2DIR = C:\libxml2
 
 LIBICONVDIR = C:\libiconv
 
 LIBZDIR = C:\libz
 
 LIBS += -Llib -lvleaf
 
 QMAKE_CXXFLAGS += -DLIBXML_STATIC
 
 QMAKE_CXXFLAGS += -I$${LIBXML2DIR}\include -I$${LIBICONVDIR}\include -I$${LIBZDIR}\include
 

	
 
}
 

	
 
# finis
src/cell.cpp
Show inline comments
 
/*
 
 *
 
 *  This file is part of the Virtual Leaf.
 
 *
 
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 
 *  it under the terms of the GNU General Public License as published by
 
 *  the Free Software Foundation, either version 3 of the License, or
 
 *  (at your option) any later version.
 
 *
 
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
 *  GNU General Public License for more details.
 
 *
 
 *  You should have received a copy of the GNU General Public License
 
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
 *
 
 *  Copyright 2010 Roeland Merks.
 
 *
 
 */
 

	
 
#include <string>
 
#include "cell.h"
 
#include "node.h"
 
#include "mesh.h"
 
#include "tiny.h"
 
#include "nodeset.h"
 
#include "cellitem.h"
 
#include "nodeitem.h"
 
#include "qcanvasarrow.h"
 
#include "parameter.h"
 

	
 
#include <QDebug>
 

	
 
static const std::string _module_id("$Id$");
 

	
 
extern Parameter par;
 

	
 
double Cell::factor=1.;
 
double Cell::offset[3]={0,0,0};
 

	
 
Cell::Cell(void) : CellBase() {
 

	
 
	m=0;
 

	
 
}
 

	
 
Cell::Cell(double x, double y, double z) : CellBase(x,y,z) {
 

	
 
	m=0;
 
	
 
}
 

	
 
Cell::Cell(const Cell &src) :  CellBase(src) {
 
	
 
	m=src.m;
 
}
 

	
 
bool Cell::Cmp(Cell *c) const { return this->Index() < c->Index(); }
 
bool Cell::Eq(Cell *c) const { return this->Index() == c->Index(); }
 

	
 
Cell Cell::operator=(const Cell &src) {
 
	CellBase::operator=(src);
 
	m=src.m;
 
	return *this;
 
}
 
//Cell(void) : CellBase() {}
 

	
 
void Cell::DivideOverAxis(Vector axis) {
 
	
 
	// Build a wall
 
	// ->  find the position of the wall
 
	
 
	// better look for intersection with a simple line intersection algorithm as below?
 
	// this leads to some exceptions: e.g. dividing a horizontal rectangle.
 
	// leaving it like this for the time being
 
	
 
	if (dead) return;
 
	
 
	Vector centroid=Centroid();
 
	double prev_cross_z=(axis * (centroid - *(nodes.back()) ) ).z ;
 
		
 
	ItList new_node_locations;
 
	
 
	for (list<Node *>::iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		// cross product to detect position of division
 
		Vector cross = axis * (centroid - *(*i));
 
		
 
		if (cross.z * prev_cross_z < 0 ) {
 
			
 
			new_node_locations.push_back(i);
 
			
 
		} // else {
 
		//       //cerr << "cross.z * prev_cross_z = " << cross.z * prev_cross_z << endl;
 
		//     }
 
		
 
		prev_cross_z=cross.z;
 
	}
 
	
 
	DivideWalls(new_node_locations, centroid, centroid+axis);
 
	
 
}
 
double Cell::MeanArea(void) {
 
	return m->MeanArea();
 
}
 

	
 

	
 
void Cell::Apoptose(void) {
 
	
 
	// First kill walls
 
	cerr << "This is cell " << Index() << "\n";
 
	cerr << "Number of walls: " << walls.size() << endl;
 
	
 
	for (list<Wall *>::iterator w=walls.begin();
 
		 w!=walls.end();
 
		 w++) {
 
		cerr << "Before apoptosis, wall " << (*w)->Index() << " says: c1 = " << (*w)->c1->Index() << ", c2 = " << (*w)->c2->Index() << endl;
 
	}
 
	for (list<Wall *>::iterator w=walls.begin();
 
		 w!=walls.end();
 
		 w++) {
 
		
 
		bool illegal_flag = false;
 
		if ((*w)->c1 == (*w)->c2 ) 
 
			illegal_flag=true;
 
		if ((*w)->c1 == this) {
 
			
 
			// invert wall?
 
			(*w)->c1 = (*w)->c2;      
 
			(*w)->c2 = m->boundary_polygon;
 
			
 
			Node *n1 = (*w)->n1;
 
			(*w)->n1 = (*w)->n2;
 
			(*w)->n2 = n1;
 
			
 
		} else {
 
			(*w)->c2 = m->boundary_polygon;
 
		}
 
		
 
		if (illegal_flag && (*w)->c1==(*w)->c2) {
 
			cerr << "I created an illegal wall.\n";
 
		}
 
		if ( ((*w)->N1()->DeadP() || (*w)->N2()->DeadP()) ||
 
			((*w)->C1() == (*w)->C2() ) ){
 
			// kill wall
 
			cerr << "Killing wall.\n";
 
			(*w)->Kill();
 
			if ((*w)) {
 
				cerr << "Wall " << (*w)->Index() << " says: c1 = " << (*w)->c1->Index() << ", c2 = " << (*w)->c2->Index() << endl;
 
			}
 
			(*w)=0;
 
		} else {
 
			cerr << "Not killing wall.\n";
 
			cerr << "Wall " << (*w)->Index() << " says: c1 = " << (*w)->c1->Index() << ", c2 = " << (*w)->c2->Index() << endl;
 
		}
 
		
 
		
 
		
 
	}
 
	walls.remove(0);
 
	
 
	// Unregister me from my nodes, and delete the node if it no longer belongs to any cells
 
	list<Node *> superfluous_nodes;
 
	for (list<Node *>::iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		
 
		Node &no(*(*n));
 
		// locate myself in the node's owner list
 
		list<Neighbor>::iterator cellpos;
 
		bool cell_found=false;
 
		for (list<Neighbor>::iterator nb=no.owners.begin();
 
			 nb!=no.owners.end();
 
			 nb++) {
 
			if (nb->cell == this) {
 
				cellpos = nb;
 
				cell_found = true;
 
				break;
 
			}
 
		}
 
		
 
		if (!cell_found) {
 
			// I think this cannot happen; but if I am wrong, unpredictable things would happen. So throw an exception.
 
			throw ("Cell not found in CellBase::Apoptose()\n\rPlease correct the code to handle this situation.");
 
		}
 
		
 
		Neighbor tmp = *cellpos;
 
		no.owners.erase(cellpos);
 
		
 
		// if node has no owners left, or only has a connection to special cell -1 (outside world), mark it as dead.
 
		
 
		if (no.owners.size()==0 || (no.owners.size()==1 && no.owners.front().cell->BoundaryPolP()) ) {
 
			no.MarkDead();
 
		} else {
 
			// register node with outside world
 
			if (find_if( no.owners.begin(), no.owners.end(), 
 
				     bind2nd ( mem_fun_ref(&Neighbor::CellEquals), m->boundary_polygon->Index() ) ) == no.owners.end() ) {
 
				
 
				tmp.cell = m->boundary_polygon;
 
				no.owners.push_back(tmp);
 
			}
 
		}
 
	}
 
	
 
	
 
	
 
	/*
 
	 // correct boundary polygon if this cell touches the boundary
 
	 
 
	 // find the first living boundary node after a dead node
 
	 bool node_found = false;
 
	 for (list<Node *>::iterator n=nodes.begin();
 
	 n!=nodes.end();
 
	 n++) {
 
	 
 
	 Node &no(*(*n));
 
	 
 
	 if (no.DeadP()) {
 
	 
 
	 list<Node *>::iterator first_node = n; 
 
	 if (++next_node == nodes.end()) first_node=nodes.begin();
 
	 
 
	 if (!(*(*first_node)).DeadP() && ((*first_node)->boundary)) {
 
	 node_found=true;
 
	 break;
 
	 }
 
	 
 
	 }
 
	 }
 
	 
 
	 // locate it in the boundary_polygon
 
	 if (node_found) {
 
	 list<Node *>::iterator insert_it = find(mesh->boundary_polygon->nodes.begin(),
 
	 mesh->boundary_polygon->nodes.end(),
 
	 ++first_node);
 
	 if (insert_it!=owners.end()) {
 
	 
 
	 if (insert_it==owners.end()) insert_it=owners.begin();
 
	 
 
	 for (list<Node *>::iterator n=insert_it;
 
	 n!=nodes.end();
 
	 n++) {
 
	 
 
	 Node &no(*(*n));
 
	 
 
	 mesh->boundary_polygon->nodes.insert(
 
	 
 
	 }
 
	 
 
	 
 
	 }
 
	 } */
 
	// mark cell as dead
 
	MarkDead();
 
}
 

	
 
void Cell::ConstructConnections(void) {
 
	
 
    // Tie up the nodes of this cell, assuming they are correctly ordered
 
	
 
    //cerr << "Constructing connections of cell " << index << endl;
 
	
 
    for (list<Node *>::iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		//cerr << "Connecting node " << *i << endl;
 
		//cerr << "Node " << *i << endl << " = " << *(*i) << endl;
 
		// 1. Tidy up existing connections (which are part of this cell)
 
		if ((*i)->owners.size()>0) {
 
			list<Neighbor>::iterator neighb_with_this_cell=
 
			// remove myself from the neighbor list of the node
 
			find_if((*i)->owners.begin(),
 
					(*i)->owners.end(),
 
				bind2nd(mem_fun_ref( &Neighbor::CellEquals ),this->Index() )  );
 
			if (neighb_with_this_cell!=(*i)->owners.end()) 
 
				(*i)->owners.erase(neighb_with_this_cell);
 
		}
 
		
 
		Node *previous;
 
		if (i!=nodes.begin()) {
 
			list<Node *>::iterator previous_iterator=i;
 
			previous_iterator--;
 
			previous=*previous_iterator;
 
		} else {
 
			previous=nodes.back();
 
		}
 
		
 
		Node *next;
 
		list<Node *>::iterator next_iterator=i;
 
		next_iterator++;
 
		if (next_iterator==nodes.end()) {
 
			next=nodes.front();
 
		} else {
 
			next=*next_iterator;
 
		}
 
		
 
		//cerr << "[" << *i << "]";
 
		//if (*i==10 || *i==11) {
 
		//cerr << "previous = " << previous << ", next = " << next << endl;
 
		//}
 
		//if (*i!=10 && *i!=11)
 
		//cerr << "Node " << *i << endl << " = " << *(*i) << endl;
 
		(*i)->owners.push_back( Neighbor( this, previous, next ) );
 
		// if (*i==50 || *i==51) {
 
		//cerr << "Node " << *i << ".size() = " << (*i)->owners.size() << endl;
 
		// }
 
    }
 
}
 

	
 

	
 
/*! \brief Divide the cell over the line v1-v2.
 
 
 
 \param v1: First vertex of line.
 
 \param v2: Second vertex of line.
 
 \param fixed_wall: If true: wall will be set to "fixed" (i.e. not motile)
 
 \return: true if the cell divided, false if not (i.e. no intersection between v1 and v2, and the cell)
 
 */
 
bool Cell::DivideOverGivenLine(const Vector v1, const Vector v2, bool fix_cellwall, NodeSet *node_set ) {
 
	
 
	if (dead) return false;
 
	
 
	
 
	
 
	// check each edge for intersection with the line
 
	ItList new_node_locations;
 
	
 
	cerr << "Cell " << Index() << " is doing DivideOverGivenLine \n";
 
	for (list<Node *>::iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		Vector v3 = *(*i);
 
		list<Node *>::iterator nb=i;
 
		nb++;
 
		if (nb == nodes.end()) {
 
			nb = nodes.begin();
 
		}
 
		Vector v4 = *(*nb);
 
		
 
		double denominator = 
 
		(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
 
		
 
		double ua = 
 
		((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
 
		double ub = 
 
		((v2.x - v1.x)*(v1.y-v3.y) - (v2.y- v1.y)*(v1.x - v3.x))/denominator;
 
		
 
		/* double intersec_x = v1.x + ua*(v2.x-v1.x);
 
		 double intersec_y = v1.y + ua*(v2.y-v1.y);*/
 
		
 
		//cerr << "Edge " << *i << " to " << *nb << ": ua = " << ua << ", ub = " << ub << ":  ";
 
		// this construction with "TINY" should simulate open/closed interval <0,1]
 
		if ( ( TINY < ua && ua < 1.+TINY ) && ( TINY < ub && ub < 1.+TINY ) ) {
 
			// yes, intersection detected. Push the location to the list of iterators
 
			new_node_locations.push_back(nb);
 
			
 
		} 
 
	}
 
	
 
	if (new_node_locations.size()<2) { 
 
		
 
		cerr << "Line does not intersect with two edges of Cell " << Index() << endl;
 
		cerr << "new_node_locations.size() = " << new_node_locations.size() << endl;
 
		return false;
 
	}
 
	
 
	ItList::iterator i = new_node_locations.begin();
 
	list< Node *>::iterator j;
 
	cerr << "-------------------------------\n";
 
	cerr << "Location of new nodes: " << (**i)->Index() << " and ";
 
	++i;
 
	j = *i; 
 
	if (j==nodes.begin()) j=nodes.end(); j--;
 
	
 
	cerr << (*j)->Index() << endl;
 
	cerr << "-------------------------------\n";
 
    
 
	if ( **new_node_locations.begin() == *j ) {
 
		cerr << "Rejecting proposed division (cutting off zero area).\n";
 
		return false;
 
	}
 
	
 
	DivideWalls(new_node_locations, v1, v2, fix_cellwall, node_set);
 
	
 
	return true;
 
	
 
}
 

	
 
// Core division procedure
 
void Cell::DivideWalls(ItList new_node_locations, const Vector from, const Vector to, bool fix_cellwall, NodeSet *node_set) {
 
	
 
	if (dead) return;
 
	
 
	bool boundary_touched_flag=false;
 
	
 
	// Step 0: keep some data about the parent before dividing
 
	
 
	ParentInfo parent_info;
 
	parent_info.polarization = ReduceCellAndWalls<Vector>( PINdir );
 
	parent_info.polarization.Normalise();
 
	parent_info.PINmembrane = SumTransporters(1);
 
	parent_info.PINendosome = Chemical(1);
 
	
 
	//cerr << "Parent polarization before division: " << parent_info.polarization << endl;
 
	
 
	// Step 1: create a daughter cell
 
	Cell *daughter=m->AddCell(new Cell());
 
    
 
	// Step 2: Copy the basics of parent cell to daughter
 
	for (int i=0;i<NChem();i++) {
 
		daughter->chem[i]=chem[i];
 
	}
 
	
 
	daughter->cell_type = cell_type;
 
	//extern double auxin_account;
 
	//auxin_account += daughter->chem[0];
 
	
 
	for (int i=0;i<NChem();i++) {
 
		daughter->new_chem[i]=new_chem[i];
 
	}
 
	
 
	
 
	daughter->boundary=boundary;
 
	daughter->m=m;
 
	
 
	daughter->target_area=target_area/2.;
 
	
 
	target_area/=2;
 
	daughter->cellvec=cellvec;
 
//	daughter->BaseArea()  = base_area;
 
	
 
	
 
	// Division currently only works for convex cells: i.e. if the division line
 
	// intersects the cells at two points only.
 
	if (new_node_locations.size()!=2) {
 
		
 
		// Note: if you would add the possibility of dividing non-convex
 
		// cells, remember to update the code below. There are some
 
		// fixed-size arrays over there!
 
		
 
		cerr << "Warning in Cell::Division: division of non-convex cells not fully implemented" << endl;
 
		
 
		// Reject the daughter cell and decrement the amount of cells
 
		// again. We can do this here because it is the last cell added.
 
		// Never, ever try to fully erase a cell elsewhere, because we
 
		// make heavy use of cell indices in this project; if you erase a
 
		// Cell somewhere in the middle of Mesh::Cells the indices will
 
		// get totally messed up...! (e.g. the indices used in Nodes::cells)
 
		
 
		cerr << "new_node_locations.size() = " << new_node_locations.size() <<endl;
 
		cerr << "daughter->index = " << daughter->index << endl;
 
		cerr << "cells.size() = " << m->cells.size() << endl;
 
		m->cells.pop_back();
 
		Cell::NCells()--;
 
		m->shuffled_cells.pop_back();
 
		return;
 
	}
 
	
 
	
 
	// We can be sure we only need two positions here because divisions
 
	// of non-convex cells are rejected above.
 
	Vector new_node[2];
 
	Node *new_node_ind[2];
 
	
 
	int new_node_flag[2];
 
	Edge div_edges[2];
 
	
 
	int nnc=0;
 
	
 
	Wall *div_wall[4];
 
	double orig_length[2];
 
	for (int i=0;i<4;i++) { div_wall[i]=0; orig_length[i/2] = 0.; }
 
	
 
	// construct new Nodes at the intersection points
 
	// unless they coincide with existing points
 
	for ( ItList::const_iterator i=new_node_locations.begin();
 
		 i!=new_node_locations.end();
 
		 i++) {
 
		
 
		// intersection between division axis
 
		// and line from this node to its predecessor
 
		
 
		// method used: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
 
		Vector v1 = from;
 
		Vector v2 = to;
 
		Vector v3 = *(**i);
 
		
 
		// get previous node
 
		list<Node *>::iterator nb=*i;
 
		if (nb == nodes.begin()) {
 
			nb = nodes.end();
 
		} 
 
		nb--;
 
		Vector v4=*( *nb ); 
 
		
 
		double denominator = 
 
		(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
 
		
 
		double ua = 
 
		((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
 
		
 
		double intersec_x = v1.x + ua*(v2.x-v1.x);
 
		double intersec_y = v1.y + ua*(v2.y-v1.y);
 
		
 
		// construct a new node at intersec
 
		// we construct a vector temporarily,
 
		// until we are sure we are going to keep the node...
 
		// Node count is damaged if we construct superfluous nodes
 
		Vector *n=new Vector(intersec_x,intersec_y,0);
 
		
 
		div_edges[nnc].first=*nb;
 
		div_edges[nnc].second=**i;
 
		
 
		// Insert this new Node if it is far enough (5% of element length)
 
		// from one of the two existing nodes, else use existing node
 
		//
 
		// old, fixed value was: par.collapse_node_threshold = 0.05
 
		double collapse_node_threshold = 0.05;
 
#ifdef FLEMING
 
		collapse_node_threshold = par.collapse_node_threshold;
 
#endif
 
		
 
		double elem_length = ( (*(**i)) - (*(*nb)) ).Norm();
 
		if ( ( *(**i) - *n ).Norm() < collapse_node_threshold  * elem_length ) {
 
			new_node_flag[nnc]=1;
 
			new_node[nnc] = *(**i);
 
			new_node_ind[nnc] = **i;
 
			//cerr << **i << "\n" ;
 
		} else 
 
			if ( (*(*nb) - *n).Norm() < collapse_node_threshold * elem_length ) {
 
				new_node_flag[nnc]=2;
 
				new_node[nnc] = *(*nb);
 
				new_node_ind[nnc] = *nb;
 
			} else {
 
				new_node_flag[nnc]=0;
 
				new_node[nnc] = *n;
 
			}
 
		
 
		nnc++;
 
		delete n;
 
	}
 
	
 
	
 
	for (int i=0;i<2;i++) {
 
		
 
		Cell *neighbor_cell=0; // we need this to split up the "Wall" objects.
 
		
 
		// for both divided edges: 
 
		//      insert its new node into all cells that own the divided edge
 
		// but only if it really is a new node:
 
		if (new_node_flag[i]!=0) {
 
			if (fix_cellwall) {
 
				(new_node_ind[i])->fixed = true;
 
				
 
				// all this we'll do later for the node set :-)
 
				/* (new_node_ind[i])->boundary = true;
 
				 (new_node_ind[i])->sam = true;
 
				 boundary = SAM;
 
				 daughter->boundary = SAM;
 
				 boundary_touched_flag = true;
 
				 */ 
 
			}
 
			
 
		} else {
 
			
 
			// (Construct a list of all owners:)
 
			// really construct the new node (if this is a new node)
 
			new_node_ind[i] = 
 
			m->AddNode(new Node (new_node[i]) );
 
			
 
			
 
			
 
			// if a new node is inserted into a fixed edge (i.e. in the petiole)
 
			// make the new node fixed as well
 
			(new_node_ind[i])->fixed = (div_edges[i].first)->fixed &&
 
			(div_edges[i].second)->fixed;
 
			
 
			// Insert Node into NodeSet if the div_edge is part of it.
 
			if (
 
				(div_edges[i].first->node_set && div_edges[i].second->node_set) &&
 
				(div_edges[i].first->node_set == div_edges[i].second->node_set))
 
			{
 
				//cerr << "Inserting node into node set\n";
 
				div_edges[i].first->node_set->AddNode( new_node_ind[i] );
 
			}
 
			
 
			// if the new wall should be fixed (i.e. immobile, or moving as
 
			// solid body), make it so, and make it part of the boundary. Using
 
			// this to make a nice initial condition by cutting off part of a
 
			// growing leaf.
 
			
 
			if (fix_cellwall) {
 
				(new_node_ind[i])->fixed = true;
 
				
 
				// All this we'll do later for the node set only
 
				/* (new_node_ind[i])->boundary = true;
 
				 (new_node_ind[i])->sam = true;
 
				 boundary_touched_flag = true;
 
				 boundary = SAM;
 
				 daughter->boundary = SAM;*/
 
			}
 
			
 
			// if new node is inserted into the boundary
 
			// it will be part of the boundary, too
 

	
 
			new_node_ind[i]->UnsetBoundary();
 
			if ((div_edges[i].first->BoundaryP() && div_edges[i].second->BoundaryP()) && // Both edge nodes are boundary nodes AND
 
			     ((m->findNextBoundaryNode(div_edges[i].first))->Index() == div_edges[i].second->Index())){ // The boundary proceeds from first to second.
 

	
 
                                #ifdef QDEBUG
 
			        qDebug() << "Index of the first node: " << div_edges[i].first->Index() << endl;
 
			        qDebug() << "Index of the second node: " << div_edges[i].second->Index() << endl;
 
			        qDebug() << "Boundary proceeds from: " <<  div_edges[i].first->Index() 
 
				         << "to: " << (m->findNextBoundaryNode(div_edges[i].first))->Index() << endl << endl;
 
                                #endif
 
			        new_node_ind[i]->SetBoundary();
 

	
 
				// We will need to repair the boundary polygon later, since we will insert new nodes
 
				//cerr << "Boundary touched for Node " << new_node_ind[i]->Index() << "\n";
 
				boundary_touched_flag=true;
 
				
 
				// and insert it into the boundary_polygon
 
				// find the position of the first node in the boundary
 
				list<Node *>::iterator ins_pos = find
 
				(m->boundary_polygon->nodes.begin(),
 
				 m->boundary_polygon->nodes.end(),
 
				 div_edges[i].first);
 
				// ... second node comes before or after it ...
 
				if (*(++ins_pos!=m->boundary_polygon->nodes.end()?
 
					  ins_pos:m->boundary_polygon->nodes.begin())!=div_edges[i].second) {
 
					
 
					m->boundary_polygon->nodes.insert(((ins_pos--)!=m->boundary_polygon->nodes.begin()?ins_pos:(--m->boundary_polygon->nodes.end())), new_node_ind[i]);
 
					
 
					// .. set the neighbors of the new node ...
 
					// in this case e.second and e.first are inverted
 
				} else {
 
					// insert before second node, so leave ins_pos as it is,
 
					// that is: incremented
 
					m->boundary_polygon->nodes.insert(ins_pos, new_node_ind[i]);	
 
					// .. set the neighbors of the new node ...
 
				}
 
			}
 
			
 
			list<Neighbor> owners;
 
			
 
			// push all cells owning the two nodes of the divides edges
 
			// onto a list
 

	
 
			copy((div_edges[i].first)->owners.begin(),
 
				 (div_edges[i].first)->owners.end(),
 
				 back_inserter(owners));
 
			copy((div_edges[i].second)->owners.begin(),
 
				 (div_edges[i].second)->owners.end(),
 
				 back_inserter(owners));
 
			
 
			
 
			// find first non-self duplicate in the owners: 
 
			// cells owning the same two nodes
 
			// share an edge with me
 
			owners.sort( mem_fun_ref( &Neighbor::Cmp ) );
 

	
 

	
 
                        #ifdef QDEBUG  
 
			list<Neighbor> unique_owners;
 
			copy(owners.begin(), owners.end(), back_inserter(unique_owners));
 
			unique_owners.unique( mem_fun_ref( &Neighbor::Eq ) );
 
			qDebug() << "The dividing edge nodes: " << div_edges[i].first->Index() << " and " << div_edges[i].second->Index() << " are owned by cells: ";
 
			// spit out each owners' cell index
 
			foreach(Neighbor neighbor, unique_owners){
 
			  qDebug() << neighbor.cell->Index() << "  ";
 
			}
 
			qDebug() << endl;
 
                        #endif
 

	
 
			// Search through the sorted list of edge node owners looking for duplicate pairs. Each pair represents an actual edge owner.
 
			list<Neighbor> edge_owners;
 
			list<Neighbor>::iterator it;
 
			for (it=owners.begin(); it!=owners.end(); it++) {
 
			  it = adjacent_find(it, owners.end(), neighbor_cell_eq);
 
			  if (it == owners.end()) break; // bail if reach the end of the list
 
                          #ifdef QDEBUG
 
			  qDebug() << "Considering: " << it->cell->Index() << " as a possible edge owner." << endl;
 
                          #endif
 
			  if (it->cell->Index() != this->Index()) {
 
                            #ifdef QDEBUG
 
			    qDebug() << "Adding: " << it->cell->Index() << " to the list of edge owners." << endl;
 
                            #endif
 
			    edge_owners.push_back(*it);
 
			  }
 
			} 
 

	
 
			if (edge_owners.size() > 1){
 
			  // Remove the boundary polygon - if its there
 
			  list<Neighbor>::iterator it;
 
			  if ((it = find_if (edge_owners.begin(), edge_owners.end(), bind2nd(mem_fun_ref(&Neighbor::CellEquals), -1))) != edge_owners.end()) {
 
                            #ifdef QDEBUG
 
			    qDebug() << "deleating: " << it->cell->Index() << " from the list of edge owners." << endl;
 
                            #endif
 
			    edge_owners.erase(it);
 
			  }
 
			}
 

	
 
                        #ifdef QDEBUG
 
			qDebug() << "The edge owners list has: " << edge_owners.size() << " elements" << endl;
 
			#endif
 

	
 
			// Since the list should always contain exactly one element, pass it on as an iterator
 
			list<Neighbor>::iterator c = (edge_owners.size() != 0) ? edge_owners.begin() : edge_owners.end();
 

	
 
			// (can we have more than one neighboring cell here??)
 
			if (c!=owners.end()) { 
 
				neighbor_cell = c->cell;
 
				if (!c->cell->BoundaryPolP()) {
 

	
 
					// find correct position in the cells node list
 
					// to insert the new node
 
					list<Node *>::iterator ins_pos = find
 
					(neighbor_cell->nodes.begin(),
 
					 neighbor_cell->nodes.end(),
 
					 div_edges[i].first);
 
					
 
					neighbor_cell->nodes.insert(ins_pos, new_node_ind[i]);
 
					neighbor_cell->ConstructConnections();
 
					
 
					// give walls to daughter later
 
			  }
 
			} else {
 
				neighbor_cell = 0;
 
			}
 
		}
 
		
 
		// Split the Wall with the neighboring cell
 
		
 
		// if the neighbor cell has not yet been identified above, do it now
 
		if (neighbor_cell == 0) {
 
			
 
			list<Neighbor> owners;
 
			
 
			// push all cells owning the two nodes of the divides edges
 
			// onto a list
 
			copy((div_edges[i].first)->owners.begin(),
 
				 (div_edges[i].first)->owners.end(),
 
				 back_inserter(owners));
 
			copy((div_edges[i].second)->owners.begin(),
 
				 (div_edges[i].second)->owners.end(),
 
				 back_inserter(owners));
 
			
 
			
 
			// find first non-self duplicate in the owners: 
 
			// cells owning the same two nodes
 
			// share an edge with me
 
			owners.sort( mem_fun_ref( &Neighbor::Cmp ) );
 

	
 
			list<Neighbor>::iterator c;
 
			for (c=owners.begin();
 
				 c!=owners.end();
 
				 c++) {
 
				c=adjacent_find(c,owners.end(),neighbor_cell_eq);
 
				if (c->cell->Index() != this->Index() || c==owners.end()) break;
 
			}
 
			
 
			if (c!=owners.end())
 
				neighbor_cell = c->cell;
 
			else 
 
				neighbor_cell = 0;
 
		}
 
		
 
		
 
		if (neighbor_cell /* && !neighbor_cell->BoundaryPolP() */) {
 
			
 
			//cerr << "Cell "  << index << " says: neighboring cell is " << neighbor_cell->index << endl;
 
			
 
			/*************** 1. Find the correct wall element  ********************/
 
			
 
			list<Wall *>::iterator w, start_search;
 
			w = start_search = walls.begin();
 
			do {
 
				// Find wall between this cell and neighbor cell
 
				w = find_if( start_search, walls.end(), bind2nd (mem_fun( &Wall::is_wall_of_cell_p ), neighbor_cell ) );
 
				start_search = w; start_search++; // continue searching at next element
 
			} while ( w!=walls.end() && !(*w)->IntersectsWithDivisionPlaneP( from, to ) ); // go on until we find the right one.
 
			
 
			if (w == walls.end()) {
 
				cerr << "Whoops, wall element not found...!\n";
 
				cerr << "Cell ID: " << neighbor_cell->Index() << endl;
 
				cerr << "My cell ID: " << Index() << endl;
 
				
 
			} else {
 
				
 
				// 2. Split it up, if we should (sometimes, the new node coincides with an existing node so
 
				// we should not split up the Wall)
 
				
 
				if (new_node_ind[i]!=(*w)->n1 && new_node_ind[i]!=(*w)->n2) {
 
					
 
					Wall *new_wall;
 
					
 
					// keep the length of the original wall; we need it to equally divide the transporter concentrations
 
					// over the two daughter walls
 
					(*w)->SetLength(); // make sure we've got the current length
 
					orig_length[i] = (*w)->Length();
 
					//cerr << "Original length is " << orig_length[i] << endl;
 
					if ((*w)->c1 == this ) {
 
						
 
						//  cerr << "Cell " << (*w)->c1->Index() << " splits up wall " << *(*w) << ", into: " << endl;
 
						new_wall = new Wall( (*w)->n1, new_node_ind[i], this, neighbor_cell);
 
						(*w)->n1 = new_node_ind[i];
 
						
 
						//  cerr << "wall " << *(*w) << ", and new wall " << *new_wall << endl;
 
						
 
					} else {
 
						new_wall = new Wall( (*w)->n1, new_node_ind[i], neighbor_cell, this);
 
						
 
						(*w)->n1 = new_node_ind[i];
 
					}
 
					
 
					
 
					//new_wall->ResetTransporterConcentrations(orig_length);
 
					//(*w)->ResetTransporterConcentrations(orig_length);
 
					
 
					// reset the transporter concentrations
 
					
 
					
 
					/*	  new_wall->SetLength();
 
					 new_wall->CorrectLength(orig_length);
 
					 
 
					 (*w)->SetLength();
 
					 (*w)->CorrectLength(orig_length);*/
 
					
 
					// 3. Give wall elements to appropriate cells
 
					if (new_wall->n1 != new_wall->n2) {
 
						
 
						if (par.copy_wall)
 
							new_wall->CopyWallContents(**w);
 
						else {
 
							// If wall contents are not copied, decide randomly which wall will be the "parent"
 
							// otherwise we will get biases (to the left), for example in the meristem growth model
 
							if (RANDOM()<0.5) {
 
								new_wall->SwapWallContents(*w);
 
							}
 
						}
 
						AddWall(new_wall);
 
						// cerr << "Building new wall: this=" << Index() << ", neighbor_cell = " << neighbor_cell->Index() << endl;
 
						
 
						neighbor_cell->AddWall( new_wall);
 
						//cerr << "Existing wall: c1 = " << (*w)->c1->Index() << ", neighbor_cell = " << (*w)->c2->Index() << endl;
 
						
 
						// Remember the addresses of the new walls
 
						div_wall[2*i+0] = *w;
 
						div_wall[2*i+1] = new_wall;
 
						
 
						// we will correct the transporter concentrations later in this member function, after division
 
						// First the new nodes should be inserted into the cells, before we can calculate wall lengths
 
						// Remember that cell walls can be bent, so have a bigger length than the Euclidean distance n1->n2
 
						
 
					} else {
 
						delete new_wall;
 
					}
 
				}
 
			}
 
		}
 
	}  // closing loop over the two divided edges (for (int i=0;i<2;i++) )
 
	
 
	// move half of the nodes to the daughter
 
	{
 
		//cerr << "Daughter: ";
 
		list<Node *>::iterator start, stop;
 
		
 
		start=new_node_locations.front();
 
		
 
		//cerr << "*new_node_locations.front() = " << *new_node_locations.front() << endl;
 
		if (new_node_flag[0]==1) {
 
			start++;
 
			if (start==nodes.end())
 
				start=nodes.begin();
 
		}  
 
		
 
		stop=new_node_locations.back();
 
		if (new_node_flag[1]==2) {
 
			if (stop==nodes.begin())
 
				stop=nodes.end();
 
			stop--;
 
		}
 
		list<Node *>::iterator i=start;
 
		while ( i!=stop) {
 
			
 
			// give the node to the daughter
 
			// (find references to parent cell from this node,
 
			// and remove them)
 
			list<Neighbor>::iterator neighb_with_this_cell=
 
			find_if((*i)->owners.begin(),
 
					(*i)->owners.end(),
 
				bind2nd(mem_fun_ref( &Neighbor::CellEquals ),this->Index() )  );
 
			if (neighb_with_this_cell==(*i)->owners.end()) {
 
				cerr << "not found\n";
 
				abort();
 
			}
 
			
 
			(*i)->owners.erase(neighb_with_this_cell);
 
			
 
			daughter->nodes.push_back( *i );
 
			
 
			
 
			i++;
 
			if (i==nodes.end())
 
				i=nodes.begin();
 
		};
 
	}
 
	
 
	// new node list of parent
 
	list<Node *> new_nodes_parent;
 
	
 
	// half of the nodes stay with the parent
 
	{
 
		list<Node *>::iterator start, stop;
 
		start=new_node_locations.back();
 
		if (new_node_flag[1]==1) {
 
			start++;
 
			if (start==nodes.end())
 
				start=nodes.begin();
 
		}
 
		stop=new_node_locations.front();
 
		if (new_node_flag[0]==2) {
 
			if (stop==nodes.begin())
 
				stop=nodes.end();
 
			stop--;
 
		}
 
		
 
		list<Node *>::iterator i=start;
 
		while (i!=stop) {
 
			new_nodes_parent.push_back( *i );
 
			
 
			i++;
 
			if (i==nodes.end()) 
 
				i = nodes.begin();
 
		};
 
	}
 

	
 
	// insert shared wall
 
	// insert shared nodes on surface of parent cell
 
	new_nodes_parent.push_back( new_node_ind[0] );
 
	daughter->nodes.push_back ( new_node_ind[1] );
 
	
 
	// optionally add the new node to the nodeset (passed by pointer)
 
	// (in this way we can move the NodeSet as a whole; useful for a fixed cutting line)
 
	if (node_set) {
 
		node_set->AddNode( new_node_ind[0] );
 
	}
 
	
 
#define MULTIPLE_NODES
 
#ifdef MULTIPLE_NODES
 
	// intermediate, extra nodes
 
	// Calculate distance between the two new nodes
 
	double dist=( new_node[1] - new_node[0] ).Norm();
 
	//bool fixed_wall = (new_node_ind[0])->fixed && (new_node_ind[1])->fixed;
 
	bool fixed_wall = false;
 
	
 
	// Estimate number of extra nodes in wall
 
	// factor 4 is to keep tension on the walls;
 
	// this is a hidden parameter and should be made explicit
 
	// later on.
 
	int n=(int)((dist/Node::target_length)/4+0.5);
 
	
 
	Vector nodevec = ( new_node[1]- new_node[0]).Normalised();
 
	
 
	double element_length = dist/(double)(n+1);
 
	
 
	// note that wall nodes need to run in inverse order in parent
 
	list<Node *>::iterator ins_pos = daughter->nodes.end();
 
	for (int i=1;i<=n;i++) {
 
		Node *node=
 
		m->AddNode( new Node( new_node[0] + i*element_length*nodevec ) );
 
		
 
		node->fixed=fixed_wall;
 
		
 
		if (!fix_cellwall)
 
			node->boundary = false;
 
		else { // if fix_cellwall is true, that is if we are cutting off
 
			// part of a leaf to make a nice initial condition, we also want to make it part of the boundary
 
			//node->boundary = true;
 
			node->fixed = true;
 
			//node->sam = true;
 
		}
 
		
 
		ins_pos=daughter->nodes.insert(ins_pos, node );
 
		new_nodes_parent.push_back( node );
 
		
 
		// optionally add the new node to the nodeset (passed by pointer)
 
		// (in this way we can move the NodeSet as a whole; useful for a fixed cutting line)
 
		if (node_set) {
 
			node_set->AddNode( node );
 
		}
 
		
 
	}
 
#endif
 
	daughter->nodes.push_back( new_node_ind[0] );
 
	new_nodes_parent.push_back( new_node_ind[1] );
 
	
 
	// optionally add the new node to the nodeset (passed by pointer)
 
	// (in this way we can move the NodeSet as a whole; useful for a fixed cutting line)
 
	if (node_set) {
 
		node_set->AddNode( new_node_ind[1] );
 
	}
 
	
 
	// move the new nodes to the parent
 
	nodes.clear();
 
	copy( new_nodes_parent.begin(), 
 
		 new_nodes_parent.end(), 
 
		 back_inserter(nodes) );
 
	
 
	
 
	// Repair cell lists of Nodes, and node connectivities
 
	ConstructConnections();
 
	daughter->ConstructConnections();
 
	
 
	if (boundary_touched_flag) {
 
		m->boundary_polygon->ConstructConnections();
 
	} 
 
	
 
	// collecting neighbors of divided cell
 
	list<CellBase *> broken_neighbors;
 
	
 
	// this cell's old neighbors
 
	copy(neighbors.begin(), neighbors.end(), back_inserter(broken_neighbors) );
 
	
 
	// this cell
 
	broken_neighbors.push_back(this);
 
	
 
	// its daughter
 
	broken_neighbors.push_back(daughter);
 
	
 
	
 
	
 
	// Recalculate area of parent and daughter
 
	area = CalcArea();
 
	daughter->area = daughter->CalcArea();
 
	
 
	SetIntegrals();
 
	daughter->SetIntegrals();
 
	
 
    
 
	
 
	// Add a "Cell Wall" for diffusion algorithms
 
	Wall *wall = new Wall( new_node_ind[0], new_node_ind[1], this, daughter );
 
	
 
	AddWall( wall );
 
	
 
	daughter->AddWall( wall );
 
	
 
	//cerr << "Correct walls of cell " << Index() << " and daughter " << daughter->Index() << endl;
 
	
 
	// Move Walls to daughter cell
 
	list <Wall *> copy_walls = walls;
 
	for (list<Wall *>::iterator w = copy_walls.begin();
 
		 w!=copy_walls.end();
 
		 w++) {
 
		
 
		//cerr << "Doing wall, before:  " << **w << endl;
 
		
 
		//  checks the nodes of the wall and gives it away if appropriate
 
		(*w)->CorrectWall ( );
 
		
 
		//cerr << "and after: " << **w << endl;
 
		
 
	}
 
	
 
	
 
	
 
	// Correct tranporterconcentrations of divided walls
 
	for (int i=0;i<4;i++) {
 
		if (div_wall[i]) {
 
			div_wall[i]->SetLength();
 
			div_wall[i]->CorrectTransporters(orig_length[i/2]);
 
		}
 
	}
 
	
 
	//neighbors.push_back( daughter );
 
	//daughter->neighbors.push_back( this );
 
	
 
	
 
	//cerr << "Cell " << index << " has been dividing, and gave birth to Cell " << daughter->index << endl;
 
	
 
	// now reconstruct neighbor list for all "broken" neighbors
 
	
 
	for (list<CellBase *>::iterator i=broken_neighbors.begin();
 
		 i!=broken_neighbors.end();i++) {
 
		((Cell *)(*i))->ConstructNeighborList();
 
	}
 
	
 
	
 
	ConstructNeighborList();
 
	daughter->ConstructNeighborList();
 
	
 
	m->plugin->OnDivide(parent_info,*daughter, *this);
 
	// wall->OnWallInsert();
 
	//daughter->OnDivide();
 
	
 
	daughter->div_counter=(++div_counter);
 
	
 
	
 
}
 

	
 
// Move the whole cell
 
void Cell::Move(const Vector T) {
 
	
 
    for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		*(*i)+=T;
 
    }
 
}
 

	
 
double Cell::Displace(double dx, double dy, double dh) {
 
	
 
	// Displace whole cell, add resulting energy to dh,
 
	// and accept displacement if energetically favorable
 
	// 
 
	// Method is called if a "fixed" node is displaced
 
	
 
	// Warning: length constraint not yet  CORRECTLY implemented for this function
 
	
 
	// Attempt to move this cell in a random direction
 
	//  Vector movement(par.mc_cell_stepsize*(RANDOM()-0.5),par.mc_cell_stepsize*(RANDOM()-0.5),0);
 
	
 
	
 
	dh=0;
 
	
 
	Vector movement(dx,dy,0);
 
	
 
	vector< pair<Node *, Node *> > length_edges;
 
	vector<double> cellareas;
 
	cellareas.reserve(neighbors.size());
 
	
 
	// for the length constraint, collect all edges to this cell's nodes,
 
	// which are not part of the cell
 
	// the length of these edges will change
 
	
 
	double old_length=0.;
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		//if ((*i)->Fixed()) return; // commented out 01/12/05
 
		for (list<Neighbor>::const_iterator n=(*i)->owners.begin();
 
			 n!=(*i)->owners.end();
 
			 n++) {
 
			
 
			if (n->getCell()!=this) {
 
				//if (!(m->getNode(n->nb1).Fixed() && m->getNode(n->nb2).Fixed())) {
 
				length_edges.push_back( pair <Node *,Node *> (*i, n->nb1) );
 
				length_edges.push_back( pair <Node *,Node *> (*i, n->nb2) );
 
				old_length += 
 
				DSQR(Node::target_length-(*(*i)-*(n->nb1)).Norm())+
 
				DSQR(Node::target_length-(*(*i)-*(n->nb2)).Norm());
 
				//}
 
			}
 
		}
 
	}
 
	
 
	// calculate area energy difference of neighboring cells
 
	// (this cells' shape remains unchanged)
 
	double old_area_energy=0., old_length_energy=0.;
 
	for (list<CellBase *>::const_iterator i=neighbors.begin();
 
		 i!=neighbors.end();
 
		 i++) {
 
		old_area_energy += DSQR((*i)->Area()-(*i)->TargetArea());
 
		old_length_energy += DSQR((*i)->Length()-(*i)->TargetLength());
 
	}
 
	
 
	Move(movement);
 
	
 
	double new_area_energy=0., new_length_energy=0.;
 
	for (list<CellBase *>::const_iterator i=neighbors.begin();
 
		 i!=neighbors.end();
 
		 i++) {
 
		cellareas.push_back((*i)->CalcArea());
 
		new_area_energy += DSQR(cellareas.back()-(*i)->TargetArea());
 
		new_length_energy += DSQR((*i)->CalcLength()-(*i)->TargetLength());
 
	}
 
	
 
	double new_length=0;
 
	for ( vector< pair< Node *, Node * > >::const_iterator e = length_edges.begin();
 
		 e != length_edges.end();
 
		 e++) {
 
		new_length +=  DSQR(Node::target_length-
 
							(*(e->first)-*(e->second)).Norm());
 
	}
 
	
 
	
 
	dh += (new_area_energy - old_area_energy) + (new_length_energy - old_length_energy) * lambda_celllength +
 
	par.lambda_length * (new_length - old_length);
 
	
 
	if (dh<0 || RANDOM()<exp(-dh/par.T)) {
 
		
 
		// update areas of cells
 
		//cerr << "neighbors: ";
 
		list<CellBase *>::const_iterator nb_it = neighbors.begin();
 
		for (vector<double>::const_iterator ar_it = cellareas.begin();
 
			 ar_it!=cellareas.end();
 
			 ( ar_it++, nb_it++) ) {
 
			((Cell *)(*nb_it))->area = *ar_it;
 
			(*nb_it)->SetIntegrals(); 
 
		}
 
		
 
		//cerr << endl;
 
		
 
		/*vector<double> area1;
 
		 vector<double> area2;
 
		 m->ExtractFromCells( mem_fun_ref(&Cell::Area), back_inserter(area1) );
 
		 m->ExtractFromCells( mem_fun_ref(&Cell::CalcArea), back_inserter(area2));
 
		 vector<double>::iterator i=area1.begin();
 
		 vector<double>::iterator j=area2.begin();
 
		 int c=0;
 
		 for (;
 
		 i!=area1.end();
 
		 (i++, j++)) {
 
		 if ( (*i-*j) > 1e-10) {
 
		 cerr << c++ << " " << *i << " " << *j << endl;
 
		 abort();
 
		 }
 
		 }*/
 
		
 
	} else {
 
		
 
		Move ( -1*movement);
 
		
 
	}
 
	
 
	return dh;
 
}
 

	
 

	
 
void Cell::Displace (void) {
 
	Displace(par.mc_cell_stepsize*(RANDOM()-0.5),par.mc_cell_stepsize*(RANDOM()-0.5),0);
 
}
 

	
 
// Get energy level of whole cell (excluding length constraint?)
 
double Cell::Energy(void) const {
 
	
 
	double energy = 0.;
 
	double length_contribution = 0.;
 
	
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		for (list<Neighbor>::const_iterator n=(*i)->owners.begin();
 
			 n!=(*i)->owners.end();
 
			 n++) {
 
			
 
			if (n->getCell()==this) {
 
				
 
				length_contribution += 
 
				DSQR(Node::target_length-(*(*i)-*(n->nb1)).Norm())+
 
				DSQR(Node::target_length-(*(*i)-*(n->nb2)).Norm());
 
				
 
			}
 
		}
 
	}
 
	
 
	// wall elasticity constraint
 
	energy += par.lambda_length * length_contribution;
 
	
 
	// area constraint
 
	energy += DSQR(CalcArea() - target_area);
 
	
 
	// cell length constraint
 
	
 
	
 
	energy += lambda_celllength * DSQR(Length() - target_length);
 
	
 
	
 
	return energy;
 
}
 

	
 

	
 

	
 

	
 

	
 
bool Cell::SelfIntersect(void) {
 
	
 
    // The (obvious) O(N*N) algorithm
 
	
 
    // Compare each edge against each other edge
 
	
 
    // An O(N log(N)) algorithm by Shamos & Hoey (1976) supposedly exists;
 
    // it was mentioned on comp.graphics.algorithms
 
	
 
    // But I haven't been able to lay my hand on the paper.
 
    // Let's try whether we need it....
 
	
 
    // method used: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
 
	
 
    for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		list<Node *>::const_iterator j=i; 
 
		++j;
 
		for (;
 
			 j!=nodes.end();
 
			 j++) 
 
		{
 
			
 
			Vector v1 = *(*i);
 
			list<Node *>::const_iterator nb=i;
 
			nb++;
 
			if (nb == nodes.end()) {
 
				nb = nodes.begin();
 
			} 
 
			Vector v2 = *(*nb);
 
			Vector v3 = *(*j);
 
			nb=j;
 
			nb++;
 
			if (nb == nodes.end()) {
 
				nb = nodes.begin();
 
			} 
 
			Vector v4=*( *nb ); 
 
			
 
			double denominator = 
 
			(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
 
			
 
			double ua = 
 
			((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
 
			double ub = 
 
			((v2.x - v1.x)*(v1.y-v3.y) - (v2.y- v1.y)*(v1.x - v3.x))/denominator;
 
			
 
			/* double intersec_x = v1.x + ua*(v2.x-v1.x);
 
			 double intersec_y = v1.y + ua*(v2.y-v1.y);*/
 
			
 
			if ( ( TINY < ua && ua < 1.-TINY ) && ( TINY < ub && ub < 1.-TINY ) ) {
 
				//cerr << "ua = " << ua << ", ub = " << ub << endl;
 
				return true;
 
			}
 
		}
 
    }
 
	
 
    return false;
 
}
 

	
 

	
 
bool Cell::MoveSelfIntersectsP(Node *moving_node_ind, Vector new_pos) {
 
	
 
	// Check whether the polygon will self-intersect if moving_node_ind 
 
	// were displaced to new_pos
 
	
 
	// Compare the two new edges against each other edge
 
	
 
	// O(2*N)
 
	
 
	// method used for segment intersection:
 
	// http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
 
	
 
	Vector neighbor_of_moving_node[2];
 
	
 
	//cerr << "list<Node *>::const_iterator moving_node_ind_pos = find (nodes.begin(),nodes.end(),moving_node_ind);\n";
 
	list<Node *>::const_iterator moving_node_ind_pos = find (nodes.begin(),nodes.end(),moving_node_ind);
 
	
 
	list<Node *>::const_iterator nb = moving_node_ind_pos;
 
	//cerr << "Done\n";
 
	nb++;
 
	if (nb == nodes.end()) {
 
		nb = nodes.begin();
 
	} 
 
	
 
	neighbor_of_moving_node[0]=*(*nb); 
 
	
 
	nb=moving_node_ind_pos;
 
	if (nb == nodes.begin()) {
 
		nb = nodes.end();
 
	}
 
	nb--;
 
	
 
	neighbor_of_moving_node[1]=*( *nb ); 
 
	
 
	
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		
 
		for (int j=0;j<2;j++) { // loop over the two neighbors of moving node
 
			list<Node *>::const_iterator nb=i;
 
			nb++;
 
			if (nb == nodes.end()) {
 
				nb = nodes.begin();
 
			} 
 
			if (*i == moving_node_ind || *nb == moving_node_ind) {
 
				// do not compare to self
 
				continue;
 
			}
 
			
 
			Vector v3 = *(*i);
 
			Vector v4 = *(*nb);
 
			
 
			double denominator = 
 
			(v4.y - v3.y)*(neighbor_of_moving_node[j].x - new_pos.x) - (v4.x - v3.x)*(neighbor_of_moving_node[j].y - new_pos.y);
 
			
 
			double ua = 
 
			((v4.x - v3.x)*(new_pos.y - v3.y) - (v4.y - v3.y)*(new_pos.x -v3.x))/denominator;
 
			double ub = 
 
			((neighbor_of_moving_node[j].x - new_pos.x)*(new_pos.y-v3.y) - (neighbor_of_moving_node[j].y- new_pos.y)*(new_pos.x - v3.x))/denominator;
 
			
 
			/* double intersec_x = new_pos.x + ua*(neighbor_of_moving_node[j].x-new_pos.x);
 
			 double intersec_y = new_pos.y + ua*(neighbor_of_moving_node[j].y-new_pos.y);*/
 
			
 
			if ( ( TINY < ua && ua < 1.-TINY ) && ( TINY < ub && ub < 1.-TINY ) ) {
 
				//cerr << "ua = " << ua << ", ub = " << ub << endl;
 
				return true;
 
			}
 
		}
 
	}
 
	
 
	return false;
 
}
 

	
 
/*! \brief Test if this cell intersects with the given line.
 
 
 
 */
 
bool Cell::IntersectsWithLineP(const Vector v1, const Vector v2) {
 
	
 
	
 
	// Compare the line against each edge
 
	
 
	// method used: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
 
	
 
	
 
	
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) 
 
    {
 
		
 
		Vector v3 = *(*i);
 
		list<Node *>::const_iterator nb=i;
 
		nb++;
 
		if (nb == nodes.end()) {
 
			nb = nodes.begin();
 
		}
 
		Vector v4 = *(*nb);
 
		
 
		double denominator = 
 
		(v4.y - v3.y)*(v2.x - v1.x) - (v4.x - v3.x)*(v2.y - v1.y);
 
		
 
		double ua = 
 
		((v4.x - v3.x)*(v1.y - v3.y) - (v4.y - v3.y)*(v1.x -v3.x))/denominator;
 
		double ub = 
 
		((v2.x - v1.x)*(v1.y-v3.y) - (v2.y- v1.y)*(v1.x - v3.x))/denominator;
 
		
 
		/* double intersec_x = v1.x + ua*(v2.x-v1.x);
 
		 double intersec_y = v1.y + ua*(v2.y-v1.y);*/
 
		
 
		if ( ( TINY < ua && ua < 1.-TINY ) && ( TINY < ub && ub < 1.-TINY ) ) {
 
			return true;
 
		}
 
    }
 
	
 
	return false;
 
	
 
	
 
}
 
/*! \brief Constructs Walls, but only one per cell boundary.
 
 
 
 Standard method constructs a Wall for each cell wall element,
 
 making transport algorithms computationally more intensive than needed.
 
 
 
 We can remove this? Well, let's leave it in the code in case we need it for something else. E.g. for importing leaf architectures in different formats than our own... :-)
 
 
 
 */
 
void Cell::ConstructWalls(void) {
 
	
 
	return;
 
	if (dead) return;
 
	
 
	walls.clear();
 
	neighbors.clear();
 
	
 
	// Get "corner points; i.e. nodes where more than 2 cells are connected
 
	list<Node *> corner_points;
 
	
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=nodes.end();i++) {
 
		
 
		// look for nodes belonging to >2 cells
 
		if ((*i)->owners.size()>2) {
 
			
 
			// push onto list
 
			corner_points.push_back(*i);
 
		}
 
		
 
	}
 
	
 
	// Construct Walls between corner points
 
	
 
	// previous one in list
 
	list<Node *>::const_iterator nb = (--corner_points.end());
 
	
 
	// loop over list, 
 
	for (list<Node *>::const_iterator i=corner_points.begin();
 
		 i!=corner_points.end(); ( i++, nb++) ) {
 
		
 
		if (nb==corner_points.end()) nb=corner_points.begin();
 
		// add owning cells to a list
 
		list<Cell *> owning_cells;
 
		Node &n(*(*i));
 
		
 
		for (list<Neighbor>::const_iterator j=n.owners.begin();
 
			 j!=n.owners.end();
 
			 j++) {
 
			owning_cells.push_back(j->cell);
 
		}
 
		
 
		Node &n2(*(*nb));
 
		for (list<Neighbor>::const_iterator j=n2.owners.begin();
 
			 j!=n2.owners.end();
 
			 j++) {
 
			owning_cells.push_back(j->cell);
 
		}
 
		
 
		// sort cell owners
 
		owning_cells.sort( mem_fun( &Cell::Cmp ));
 

	
 
		// find duplicates
 
		vector<Cell *> duplicates;
 
		list<Cell *>::const_iterator prevj = (--owning_cells.end());
 
		for (list<Cell *>::const_iterator j=owning_cells.begin();
 
			 j!=owning_cells.end();
 
			 ( j++, prevj++) ) {
 
			
 
			if (prevj==owning_cells.end()) prevj=owning_cells.begin();
 
			if (*j==*prevj) duplicates.push_back(*j);
 
			
 
		}
 
		
 
		
 
		if (duplicates.size()==3) { // ignore cell boundary (this occurs only after the first division, I think)
 
			vector<Cell *>::iterator dup_it = find_if(duplicates.begin(),duplicates.end(),mem_fun(&Cell::BoundaryPolP) );
 
			if (dup_it!=duplicates.end()) 
 
				duplicates.erase(dup_it);
 
			else {
 
				return;
 
			}
 
			
 
		}
 
		
 
		
 
		// One Wall for each neighbor, so we should be able to correctly construct neighbor lists here.
 
		if (duplicates[0]==this) {
 
			//walls. new Wall(*nb,*i,duplicates[0],duplicates[1]) );
 
			AddWall(  new Wall(*nb,*i,duplicates[0],duplicates[1]) );
 
			if (!duplicates[1]->BoundaryPolP()) {
 
				
 
				neighbors.push_back(duplicates[1]);
 
			}
 
		} else {
 
			//walls.push_back( new Wall(*nb,*i,duplicates[1],duplicates[0]) ); 
 
			AddWall ( new Wall(*nb,*i,duplicates[1],duplicates[0]) );
 
			if (!duplicates[0]->BoundaryPolP()) {
 
				neighbors.push_back(duplicates[0]);
 
				
 
			}
 
		}
 
	}
 
	
 
}
 

	
 

	
 
void BoundaryPolygon::Draw(QGraphicsScene *c, QString tooltip) {
 
	
 
	// Draw the BoundaryPolygon on a QCanvas object
 
	
 
	
 
	CellItem* p = new CellItem(this, c);
 
	
 
	QPolygonF pa(nodes.size());
 
	int cc=0;
 
	
 
	for (list<Node *>::const_iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		Node *i=*n;
 
		
 
		pa[cc++] = QPoint((int)((Offset().x+i->x)*Factor()),
 
						  (int)((Offset().y+i->y)*Factor()) );
 
	}
 
	
 
	
 
	p->setPolygon(pa);
 
	p->setPen(par.outlinewidth>=0?QPen( QColor(par.cell_outline_color),par.outlinewidth):QPen(Qt::NoPen));
 
	p->setBrush( Qt::NoBrush );
 
	p->setZValue(1);
 
	
 
	if (!tooltip.isEmpty())
 
		p->setToolTip(tooltip);
 
	
 
	p->show();
 
	
 
}
 

	
 
void Cell::Flux(double *flux, double *D)  {
 
	
 
	
 
	// loop over cell edges
 
	
 
	for (int c=0;c<NChem();c++) flux[c]=0.;
 
	
 
	for (list<Wall *>::iterator i=walls.begin();
 
		 i!=walls.end();
 
		 i++) {
 
		
 
		
 
		// leaf cannot take up chemicals from environment ("no flux boundary")
 
		if ((*i)->c2->BoundaryPolP()) continue;
 
		
 
		
 
		// flux depends on edge length and concentration difference
 
		for (int c=0;c<NChem();c++) {
 
			double phi = (*i)->length * ( D[c] ) * ( ((Cell *)(*i)->c2)->chem[c] - chem[c] );
 
			
 
			if ((*i)->c1!=this) {
 
				cerr << "Warning, bad cells boundary: " << (*i)->c1->Index() << ", " << index << endl;
 
			}
 
			
 
			flux[c] += phi;
 
		}    
 
	}
 
	
 
}
 

	
 

	
 
// graphics stuff, not compiled for batch versions
 
#ifdef QTGRAPHICS
 

	
 
#include "canvas.h"
 

	
 
void Cell::Draw(QGraphicsScene *c, QString tooltip) {
 
	
 
	// Draw the cell on a QCanvas object
 
	
 
	if (DeadP()) { 
 
		cerr << "Cell " << index << " not drawn, because dead.\n";
 
		return;
 
	}
 
	
 
	CellItem* p = new CellItem(this, c);
 
	
 
	QPolygonF pa(nodes.size());
 
	int cc=0;
 
	
 
	for (list<Node *>::const_iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		Node *i=*n;
 
		
 
		pa[cc++] = QPoint((int)((offset[0]+i->x)*factor),
 
						  (int)((offset[1]+i->y)*factor) );
 
	}
 
	
 
	
 
	QColor cell_color;
 
	
 
	m->plugin->SetCellColor(*this,cell_color);
 
	
 
	p->setPolygon(pa);
 
	p->setPen(par.outlinewidth>=0?QPen( QColor(par.cell_outline_color),par.outlinewidth):QPen(Qt::NoPen));
 
	p->setBrush( cell_color );
 
	p->setZValue(1);
 
	
 
	if (!tooltip.isEmpty())
 
		p->setToolTip(tooltip);
 
	
 
	p->show();
 
	
 
}
 

	
 

	
 
void Cell::DrawCenter(QGraphicsScene *c) const {
 
  // Maginfication derived similarly to that in nodeitem.cpp
 
  // Why not use Cell::Magnification()?
 
  const double mag = par.node_mag;
 
	
 
	// construct an ellipse
 
  QGraphicsEllipseItem *disk = new QGraphicsEllipseItem ( -1*mag, -1*mag, 2*mag, 2*mag, 0, c );
 
	disk->setBrush( QColor("forest green") );
 
	disk->setZValue(5);
 
	disk->show();
 
	Vector centroid=Centroid();
 
	disk -> setPos((offset[0]+centroid.x)*factor,(offset[1]+centroid.y)*factor);
 
}
 

	
 
void Cell::DrawNodes(QGraphicsScene *c) const {
 
	
 
	for (list<Node *>::const_iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		Node *i=*n;
 
		
 
		//QCanvasEllipse *item = new QCanvasEllipse( 10, 10, c);
 
		NodeItem *item = new NodeItem ( &(*i), c );
 
		//QGraphicsRectItem *item = new QGraphicsRectItem(-50, -50, 50, 50, 0, c);
 
		//disk->setBrush( QColor("IndianRed") );
 
		
 
		/*if (i->sam) {
 
		 item->setBrush( purple );
 
		 } else {
 
		 if (i->boundary) {
 
		 item->setBrush( deep_sky_blue );
 
		 } 
 
		 else {
 
		 item->setBrush( indian_red );
 
		 }
 
		 }*/
 
		item->setColor();
 
		
 
		/*(if (item->getNode().DeadP()) {
 
		 item->setBrush( QBrush (Qt::Dense6Pattern) );
 
		 }*/
 
		item->setZValue(5);
 
		item->show();
 
		item ->setPos(((offset[0]+i->x)*factor),
 
					  ((offset[1]+i->y)*factor) );
 
	}
 
	
 
}
 

	
 
void Cell::DrawIndex(QGraphicsScene *c) const {
 
	
 
	//  stringstream text;
 
	//     text << index;
 
	//     Vector centroid = Centroid();
 
	//     QCanvasText *number = new QCanvasText ( QString (text.str()), c );
 
	//     number->setColor( QColor(par.textcolor) );
 
	//     number->setZ(20);
 
	//     number->setFont( QFont( "Helvetica", par.cellnumsize, QFont::Bold) );
 
	//     number->show();
 
	//     number -> move((int)((offset[0]+centroid.x)*factor),
 
	// 		   (int)((offset[1]+centroid.y)*factor) );
 
	DrawText( c, QString("%1").arg(index));
 
}
 

	
 
// Draw any text in the cell's center
 
void Cell::DrawText(QGraphicsScene *c, const QString &text) const {
 
    
 
	Vector centroid = Centroid();
 
	QGraphicsSimpleTextItem *ctext = new QGraphicsSimpleTextItem ( text, 0, c );
 
	ctext->setPen( QPen(QColor(par.textcolor)) );
 
	ctext->setZValue(20);
 
	ctext->setFont( QFont( "Helvetica", par.cellnumsize, QFont::Bold) );
 
	//ctext->setTextFlags(Qt::AlignCenter);
 
	ctext->show();
 
	ctext ->setPos(((offset[0]+centroid.x)*factor),
 
				   ((offset[1]+centroid.y)*factor) );
 
	
 
}
 

	
 

	
 
void Cell::DrawAxis(QGraphicsScene *c) const {
 
	
 
	Vector long_axis;
 
	double width;
 
	Length(&long_axis, &width);
 
	
 
	//cerr << "Length is "  << length << endl;
 
	long_axis.Normalise();
 
	Vector short_axis=long_axis.Perp2D();
 
    
 

	
 
	Vector centroid = Centroid();
 
	Vector from = centroid - 0.5 * width * short_axis;
 
	Vector to = centroid + 0.5 * width *short_axis;
 

	
 
	
 
	QGraphicsLineItem *line = new QGraphicsLineItem(0, c);
 
	line->setPen( QPen(QColor(par.arrowcolor),2) );
 
	line->setZValue(2);
 
    
 
	line->setLine( ( (offset[0]+from.x)*factor ),
 
				  ( (offset[1]+from.y)*factor ), 
 
				  ( (offset[0]+to.x)*factor ),
 
				  ( (offset[1]+to.y)*factor ) );
 
	line->setZValue(10);
 
	line->show();
 
	
 
}
 

	
 
void Cell::DrawStrain(QGraphicsScene *c) const {
 
	
 
	MyWarning::warning("Sorry, Cell::DrawStrain temporarily not implemented.");
 
	/* Vector long_axis;
 
	double width;
 
	Length(&long_axis, &width);
 
	
 
	//cerr << "Length is "  << length << endl;
 
	long_axis.Normalise();
 
	Vector short_axis=long_axis.Perp2D();
 
    
 
	//  To test method "Strain" temporarily substitute "short_axis" for "strain" 
 
	Vector strain = Strain();
 
	//strain.Normalise();
 
	//static ofstream strainf("strain.dat");
 
	//strainf << strain.Norm() << endl;
 
	Vector centroid = Centroid();
 
	// Vector from = centroid - 0.5 * width * short_axis;
 
    // Vector to = centroid + 0.5 * width *short_axis;
 
	Vector from = centroid - 0.5 * strain;
 
	Vector to = centroid + 0.5 * strain;
 
	
 
	QGraphicsArrowItem *arrow = new QGraphicsArrowItem(0, c);
 
	arrow->setPen( QPen(QColor(par.arrowcolor),100) );
 
    
 
	arrow->setLine( ( (offset[0]+from.x)*factor ),
 
				   ( (offset[1]+from.y)*factor ), 
 
				   ( (offset[0]+to.x)*factor ),
 
				   ( (offset[1]+to.y)*factor ) );
 
	arrow->setZValue(10.);
 
	arrow->show();
 
	*/
 
}
 

	
 
// Draw connecting lines to neighbors
 
/*void Cell::DrawTriangles(QCanvas &c) {
 
 
 
 for (list<Neighbor>::const_iterator nb=nb_list.begin();
 
 nb!=nb_list.end();
 
 nb++) {
 
 QCanvasLine *line = new QCanvasLine(&c);
 
 line->setPen( QPen(QColor("black"),2) );
 
 line->setZ(2);
 
 
 
 line->setPoints((offset[0]+x)*factor,(offset[1]+y)*factor, 
 
 (offset[0]+nb->c->x)*factor,(offset[1]+nb->c->y)*factor);
 
 line->setZ(10);
 
 line->show();
 
 }
 
 
 
 }*/
 

	
 

	
 

	
 
void Cell::DrawFluxes(QGraphicsScene *c, double arrowsize)  {
 
	
 
	// get the mean flux through this cell
 
	//Vector vec_flux = ReduceWalls( mem_fun_ref( &Wall::VizFlux ), Vector() );
 
	Vector vec_flux = ReduceCellAndWalls<Vector>( PINdir );
 
	
 
	vec_flux.Normalise();
 
	
 
	vec_flux *= arrowsize;
 
	
 
	QGraphicsArrowItem *arrow = new QGraphicsArrowItem(0,c);
 
	
 
	Vector centroid = Centroid();
 
	Vector from = centroid - vec_flux/2.;
 
	Vector to = centroid + vec_flux/2.;
 
    
 
	
 
	arrow->setPen( QPen(QColor(par.arrowcolor),par.outlinewidth));
 
	arrow->setZValue(2);
 
	
 
	arrow->setLine( ( (offset[0]+from.x)*factor ),
 
				   ( (offset[1]+from.y)*factor ), 
 
				   ( (offset[0]+to.x)*factor ),
 
				   ( (offset[1]+to.y)*factor ) );
 
	arrow->setZValue(10);
 
	arrow->show();
 
	
 
}
 

	
 

	
 
void Cell::DrawWalls(QGraphicsScene *c) const {
 
	
 
	for_each(walls.begin(), walls.end(), bind2nd ( mem_fun ( &Wall::Draw ) , c ) );
 
	
 
	// to see the cells connected the each wall (for debugging), uncomment the following
 
	//for_each(walls.begin(), walls.end(), bind2nd ( mem_fun ( &Wall::ShowStructure ), c ) );
 
}
 

	
 

	
 
void Cell::DrawValence(QGraphicsScene *c) const {
 
	
 
	DrawText(c, QString("%1").arg(walls.size()) );
 
	
 
}
 

	
 
#endif
 

	
 
/*! \brief Recalculate the lengths of the cell's Walls.
 
 
 
 Call this function after the Monte Carlo updates, and before doing the reaction-diffusion iterations.
 
 
 
 */
 
void Cell::SetWallLengths(void) {
 
	
 
	for (list<Wall *>::iterator de=walls.begin();
 
		 de!=walls.end();
 
		 de++) {
 
		
 
		// Step 1: find the path of nodes leading along the Wall.
 
		// A Wall often represents a curved cell wall: we want the total
 
		// length _along_ the wall here...
 
		
 
		
 
		// Locate first and second nodes of the edge in list of nodes
 
		list<Node *>::const_iterator first_node_edge = find(nodes.begin(), nodes.end(), (*de)->n1);
 
		list<Node *>::const_iterator second_node_edge_plus_1 = ++find(nodes.begin(), nodes.end(), (*de)->n2);
 
		
 
		double sum_length = 0.;
 
		
 
		// Now, walk to the second node of the edge in the list of nodes
 
		for (list<Node *>::const_iterator n=++first_node_edge;
 
			 n!=second_node_edge_plus_1;
 
			 ++n ) {
 
			
 
			if (n==nodes.end()) n=nodes.begin(); /* wrap around */ 
 
			
 
			
 
			list<Node *>::const_iterator prev_n = n; 
 
			if (prev_n==nodes.begin()) prev_n=nodes.end();
 
			--prev_n;
 
			
 
			
 
			// Note that Node derives from a Vector, so we can do vector calculus as defined in vector.h 
 
			sum_length += (*(*prev_n) - *(*n)).Norm(); 
 
			
 
			//cerr << "Node " << *prev_n << " to " << *n << ", cumulative length = " << sum_length << endl;
 
		}
 
		
 
		// We got the total length of the Wall now, store it:
 
		(*de)->length = sum_length;
 
		
 
		//cerr << endl;
 
		// goto next de
 
	}
 
}
 

	
 

	
 
//! Add Wall w to the list of Walls
 
void Cell::AddWall( Wall *w ) {
 
	
 
	// if necessary, we could try later inserting it at the correct position
 
	if (w->c1 == w->c2 ){
 
		
 
		cerr << "Wall between identical cells: " << w->c1->Index()<< endl;
 
		
 
	}
 
	// Add Wall to Cell's list
 
	walls.push_back( w );
 
	
 
	// Add wall to Mesh's list if it isn't there yet
 
	
 
	if (find (
 
			  m->walls.begin(), m->walls.end(),
 
			  w )
 
		== m->walls.end() ) {
 
		m->walls.push_back(w);
 
	}
 
	
 
}
 

	
 
//! Remove Wall w from the list of Walls
 
list<Wall *>::iterator Cell::RemoveWall( Wall *w ) {
 
	
 
	// remove wall from Mesh's list
 
	m->walls.erase(
 
				   find(
 
						m->walls.begin(), m->walls.end(),
 
						w )
 
				   );
 
	
 
	// remove wall from Cell's list
 
	return 
 
	walls.erase (
 
				 find( 
 
					  walls.begin(), walls.end(),
 
					  w )
 
				 );
 
	
 
}
 

	
 

	
 

	
 
void Cell::EmitValues(double t) {
 
	
 
	//  cerr << "Attempting to emit " << t << ", " << chem[0] << ", " << chem[1] << endl;
 
	//chem[3] = SumTransporters( 1 );
 
	emit ChemMonValue(t, chem);
 
	
 
}
src/cellbase.cpp
Show inline comments
 
/*
 
 *
 
 *  This file is part of the Virtual Leaf.
 
 *
 
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 
 *  it under the terms of the GNU General Public License as published by
 
 *  the Free Software Foundation, either version 3 of the License, or
 
 *  (at your option) any later version.
 
 *
 
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
 *  GNU General Public License for more details.
 
 *
 
 *  You should have received a copy of the GNU General Public License
 
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
 *
 
 *  Copyright 2010 Roeland Merks.
 
 *
 
 */
 

	
 
#include <cmath>
 
#include <string>
 
#include <sstream>
 
#include <vector>
 
#include <algorithm>
 
#include <functional>
 
#ifdef QTGRAPHICS
 
#include <QGraphicsScene>
 
#include <qpainter.h>
 
#include <qcolor.h>
 
#include <qfont.h>
 
#include <qwidget.h>
 
//Added by qt3to4:
 
#include <Q3PointArray>
 
#include <fstream>
 
#include "nodeitem.h"
 
#include "cellitem.h"
 
#include "qcanvasarrow.h"
 
#endif
 
#include "nodeset.h"
 

	
 
//#include "cond_operator.h"
 
#include "cellbase.h"
 
//#include "node.h"
 
#include "wall.h"
 
#include "random.h"
 
#include "parameter.h" 
 
#include "mesh.h"
 
#include "sqr.h"
 
#include "tiny.h"
 

	
 
static const std::string _module_id("$Id$");
 

	
 
extern Parameter par;
 

	
 
const char* CellBase::boundary_type_names[4] = {"None", "NoFlux", "SourceSink", "SAM"};
 

	
 
// These statics have moved to class "CellsStaticDatamembers"
 

	
 
//double CellBase::static_base_area = 0.;
 
//int CellBase::ncells=0;
 
//int CellBase::NChem()=0;
 

	
 
#ifndef VLEAFPLUGIN
 
CellsStaticDatamembers *CellBase::static_data_members = new CellsStaticDatamembers();
 
#else
 
CellsStaticDatamembers *CellBase::static_data_members = 0;
 
#endif
 

	
 
CellBase::CellBase(QObject *parent) : 
 
QObject(parent),
 
Vector()
 
{
 

	
 
	chem=new double[NChem()];
 
	for (int i=0;i<NChem();i++) {
 
		chem[i]=0.;
 
	}
 
	new_chem=new double[NChem()];
 
	for (int i=0;i<NChem();i++) {
 
		new_chem[i]=0.;
 
	}
 
	boundary=None;
 
	index=(NCells()++);
 
	area=0.;
 
	target_area=1;
 
	target_length=0; //par.target_length;
 
	lambda_celllength = 0; //par.lambda_celllength;
 
	intgrl_xx=0.; intgrl_xy=0.; intgrl_yy=0.;
 
	intgrl_x=0.; intgrl_y=0.;
 
	source = false;
 
	source_conc = 0.;
 
	source_chem = 0;
 
	at_boundary=false;
 
	fixed = false;
 
	pin_fixed = false;
 
	stiffness = 0;
 
	marked = false;
 
	dead = false;
 
	div_counter=0;
 
	cell_type = 0;
 
	flag_for_divide = false;
 
	division_axis = 0;
 
}
 

	
 

	
 
CellBase::CellBase(double x,double y,double z) : QObject(), Vector(x,y,z)
 
{
 
#ifndef VLEAFPLUGIN
 
	if (static_data_members == 0) {
 
		static_data_members = new CellsStaticDatamembers();
 
	}
 
#endif
 
	chem=new double[NChem()];
 
	for (int i=0;i<NChem();i++) {
 
		chem[i]=0.;
 
	}
 
	new_chem=new double[NChem()];
 
	for (int i=0;i<NChem();i++) {
 
		new_chem[i]=0.;
 
	}
 
	boundary=None;
 
	area=0.;
 
	target_area=1;
 
	target_length=0; //par.target_length;
 
	lambda_celllength=0; // par.lambda_celllength;
 
	
 
	index=(NCells()++);
 
	
 
	intgrl_xx=0.; intgrl_xy=0.; intgrl_yy=0.;
 
	intgrl_x=0.; intgrl_y=0.;
 
	
 
	source = false;
 
	fixed = false;
 
	at_boundary=false;
 
	pin_fixed = false;
 
	stiffness = 0;
 
	marked=false;
 
	dead  = false;
 
	div_counter = 0;
 
	cell_type = 0;
 
	flag_for_divide = false;
 
	division_axis = 0;
 

	
 
}
 

	
 
CellBase::CellBase(const CellBase &src) :  Vector(src), QObject()
 
{
 
	
 
	chem=new double[NChem()];
 
	for (int i=0;i<NChem();i++) {
 
		chem[i]=src.chem[i];
 
	}
 
	new_chem=new double[NChem()];
 
	for (int i=0;i<NChem();i++) {
 
		new_chem[i]=src.new_chem[i];
 
	}
 
	boundary=src.boundary;
 
	area=src.area;
 
	target_length=src.target_length;
 
	lambda_celllength=src.lambda_celllength;
 
	
 
	intgrl_xx=src.intgrl_xx; intgrl_xy=src.intgrl_xy; intgrl_yy=src.intgrl_yy;
 
	intgrl_x=src.intgrl_x; intgrl_y=src.intgrl_y;
 
	
 
	target_area=src.target_area;
 
	index=src.index;
 
	nodes=src.nodes;
 
	neighbors=src.neighbors;
 
	walls=src.walls;
 
	source = src.source;
 
	fixed = src.fixed;
 
	source_conc = src.source_conc;
 
	source_chem = src.source_chem;
 
	cellvec = src.cellvec;
 
	at_boundary=src.at_boundary;
 
	pin_fixed = src.pin_fixed;
 
	stiffness = src.stiffness;
 
	marked = src.marked;
 
	dead = src.dead;
 
	cell_type = src.cell_type;
 
	div_counter = src.div_counter;
 
	flag_for_divide = src.flag_for_divide;
 
	</i>
 
	division_axis = src.division_axis;
 
}
 

	
 

	
 
CellBase CellBase::operator=(const CellBase &src) {
 
	Vector::operator=(src);
 
	//  QObject::operator=(src);
 
	for (int i=0;i<NChem();i++) {
 
		chem[i]=src.chem[i];
 
	}
 
	for (int i=0;i<NChem();i++) {
 
		new_chem[i]=src.chem[i];
 
	}
 
	boundary=src.boundary;
 
	area=src.area;
 
	intgrl_xx=src.intgrl_xx; intgrl_xy=src.intgrl_xy; intgrl_yy=src.intgrl_yy;
 
	intgrl_x=src.intgrl_x; intgrl_y=src.intgrl_y;
 
	target_area=src.target_area;
 
	target_length=src.target_length;
 
	lambda_celllength=src.lambda_celllength;
 
	
 
	index=src.index;
 

	
 
	nodes=src.nodes;
 
	neighbors=src.neighbors;
 
	walls=src.walls;
 
	source = src.source;
 
	fixed = src.fixed;
 
	source_conc = src.source_conc;
 
	source_chem = src.source_chem;
 
	cellvec = src.cellvec;
 
	at_boundary=src.at_boundary;
 
	pin_fixed = src.pin_fixed;
 
	stiffness = src.stiffness;
 
	marked = src.marked;
 
	dead = src.dead;
 
	cell_type = src.cell_type;
 
	div_counter = src.div_counter;
 
	flag_for_divide = src.flag_for_divide;
 
	division_axis = src.division_axis;
 
	return *this;
 
}
 

	
 
void CellBase::SetChemical(int c, double conc) {
 
	if (c>=NChem()) {
 
		stringstream error;
 
		error << "SetChemical: value c = " << c << " is out of range\n";
 
		throw error.str().c_str();
 
	}
 
	chem[c]=conc;
 
}
 

	
 
ostream &CellBase::print(ostream &os) const {
 
	
 
	
 
	os << "[ index = " << index << " {" << x << ", " << y << ", " << z << "}: {";
 
	
 
	for (int i=0;i<NChem()-1;i++) {
 
		os << chem[i] << ", ";
 
	}
 
	
 
	os << chem[NChem()-1] << " } ]";
 
	
 
	os << endl << "Nodelist = { " << endl;
 
	
 
	for (list<Node *>::const_iterator i =  nodes.begin(); i!=nodes.end(); i++) {
 
		os << (*i)->Index() << "( " << *i << ") ";
 
	}
 
	os << " } ";
 
	
 
	for (list<Wall *>::const_iterator i =  walls.begin(); i!=walls.end(); i++) {
 
		(*i)->print(os);
 
		os << ", ";
 
	} 
 
	os << endl;
 
	
 
	os << " [ area = " << area << " ]";
 
	os << " [ walls = ";
 
	
 
	for (list<Wall *>::const_iterator i= walls.begin();
 
		 i!=walls.end();
 
		 i++) {
 
		os << (*i)->n1->Index() << " -> " << (*i)->n2->Index() << ", " <<  (*i)->c1->Index() << " | " << (*i)->c2->Index() << ", ";
 
	}
 
	os << " ] ";
 
	os << "div_counter = " << div_counter << endl;
 
	os << "cell_type = " << cell_type << endl;
 
	os << endl;
 
	return os;
 
	
 
}
 

	
 
ostream &operator<<(ostream &os, const CellBase &c) {
 
	c.print(os);
 
	return os;
 
}
 

	
 

	
 
double CellBase::CalcArea(void) const {
 
	
 
	double loc_area=0.;
 
	
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=(nodes.end());
 
		 i++) {
 
		
 
		list<Node *>::const_iterator i_plus_1=i; i_plus_1++;
 
		if (i_plus_1==nodes.end())
 
			i_plus_1=nodes.begin();
 
		
 
		loc_area+= (*i)->x * (*i_plus_1)->y;
 
		loc_area-= (*i_plus_1)->x * (*i)->y;
 
	}
 

	
 
	// http://technology.niagarac.on.ca/courses/ctec1335/docs/arrays2.pdf	
 
	//return loc_area/2.0; 
 
	return fabs(loc_area)/2.0; 
 
} 
 

	
 
Vector CellBase::Centroid(void) const {
 
	
 
	double area=0.;
 
	double integral_x_dxdy=0.,integral_y_dxdy=0.;
 
	
 
	for (list<Node *>::const_iterator i=nodes.begin();
 
		 i!=(nodes.end());
 
		 i++) {
 
		
 
		list<Node *>::const_iterator i_plus_1=i; i_plus_1++;
 
		if (i_plus_1==nodes.end())
 
			i_plus_1=nodes.begin();
 
		
 
		area+= (*i)->x * (*i_plus_1)->y;
 
		area-= (*i_plus_1)->x * (*i)->y;
 
		
 
		integral_x_dxdy+=
 
			((*i_plus_1)->x+(*i)->x)*
 
			((*i)->x*(*i_plus_1)->y-
 
			 (*i_plus_1)->x*(*i)->y);
 
		integral_y_dxdy+=
 
			((*i_plus_1)->y+(*i)->y)*
 
			((*i)->x*(*i_plus_1)->y-
 
			 (*i_plus_1)->x*(*i)->y);
 
	}
 
    
 
	//area/=2.0;
 
	area = fabs(area)/2.0;
 
	
 
	integral_x_dxdy/=6.;
 
	integral_y_dxdy/=6.;
 
	
 
	Vector centroid(integral_x_dxdy,integral_y_dxdy,0);
 
	centroid/=area;
 
	return centroid;
 
}
 

	
 
/*Node &CellBase::getNode(list<Node *>::const_iterator i) const {
 

	
 
if (i==
 
	return m->getNode(i);
 
  }*/
 

	
 

	
 

	
 

	
 
void CellBase::SetIntegrals(void) const {
 
	
 
	// Set the initial values for the integrals over x^2,
 
	// xy, yy, x, and y
 
	
 
	// these values will be updated after each move of the CellBase wall
 
	
 
	intgrl_xx=0.; intgrl_xy=0.; intgrl_yy=0.;
 
	intgrl_x=0.; intgrl_y=0.;
 
	area=0.;
 
	list<Node *>::const_iterator nb;
 
	list<Node *>::const_iterator i=nodes.begin();
 
	
 
	for (;
 
		 i!=(nodes.end());
 
		 i++) {
 
		
 
		nb = i; nb++; if (nb==nodes.end()) nb=nodes.begin();
 
		
 
		area+=(*i)->x*(*nb)->y;
 
		area-=(*nb)->x*(*i)->y;
 
		intgrl_xx+= 
 
			((*i)->x*(*i)->x+
 
			 (*nb)->x*(*i)->x+
 
			 (*nb)->x*(*nb)->x ) *
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y);
 
		intgrl_xy+= 
 
			((*nb)->x*(*i)->y-
 
			 (*i)->x*(*nb)->y)*
 
			((*i)->x*(2*(*i)->y+(*nb)->y)+
 
			 (*nb)->x*((*i)->y+2*(*nb)->y));
 
		intgrl_yy+=
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y)*
 
			((*i)->y*(*i)->y+
 
			 (*nb)->y*(*i)->y+
 
			 (*nb)->y*(*nb)->y );
 
		intgrl_x+=
 
			((*nb)->x+(*i)->x)*
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y);
 
		intgrl_y+=
 
			((*nb)->y+(*i)->y)*
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y);
 
	}
 
	
 
	//area/=2.0;
 
	area = fabs(area)/2.0;
 
	
 
	/* intgrl_x/=6.;
 
	intgrl_y/=6.;
 
	
 
	intgrl_xx/=12.;
 
	intgrl_xy/=24.;
 
	intgrl_yy/=12.;*/
 
	
 
	
 
}
 

	
 
double CellBase::Length(Vector *long_axis, double *width)  const {
 
	
 
	// Calculate length and axes of CellBase
 
    
 
	// Calculate inertia tensor
 
	// see file inertiatensor.nb for explanation of this method
 
	if (!lambda_celllength) {
 
		
 
		// Without length constraint we do not keep track of the cells'
 
		// moments of inertia. So we must calculate them here.
 
		SetIntegrals();
 
	}
 
	
 
	double intrx=intgrl_x/6.;
 
	double intry=intgrl_y/6.;
 
	double ixx=(intgrl_xx/12.)-(intrx*intrx)/area;
 
	double ixy=(intgrl_xy/24.)+(intrx*intry)/area;
 
	double iyy=(intgrl_yy/12.)-(intry*intry)/area;
 
	
 
	double rhs1=(ixx+iyy)/2., rhs2=sqrt( (ixx-iyy)*(ixx-iyy)+4*ixy*ixy )/2.;
 
    
 
	double lambda_b=rhs1+rhs2;
 
	
 
	// see: http://scienceworld.wolfram.com/physics/MomentofInertiaEllipse.html
 
	//    cerr << "n = " << n << "\n";
 
	
 
	// Vector eigenvectors[2];
 
	// eigenvectors[0] = Vector(-(-ixx + iyy ) + rhs2, ixy, 0);
 
	// eigenvectors[1] = Vector(-(-ixx + iyy ) - rhs2, ixy, 0);
 
	if (long_axis) {
 
		*long_axis = Vector(-ixy, lambda_b - ixx, 0);
 
		//   cerr << "ixx = " << ixx << ", ixy = " << ixy << ", iyy = " << iyy << ", area = " << area << endl;
 
	}
 
	
 
	if (width) {
 
		*width = 4*sqrt((rhs1-rhs2)/area);
 
	}
 
	
 
	return 4*sqrt(lambda_b/area);
 
    
 
	
 
	
 
}
 

	
 
double CellBase::CalcLength(Vector *long_axis, double *width)  const {
 
	
 
	// Calculate length and axes of CellBase, without touching cells raw moments
 
    
 
	// Calculate inertia tensor
 
	// see file inertiatensor.nb for explanation of this method
 
	
 
	double my_intgrl_xx=0., my_intgrl_xy=0., my_intgrl_yy=0.;
 
	double my_intgrl_x=0., my_intgrl_y=0., my_area=0.;
 
	my_area=0.;
 
	list<Node *>::const_iterator nb;
 
	list<Node *>::const_iterator i=nodes.begin();
 
	
 
	for (;
 
		 i!=(nodes.end());
 
		 i++) {
 
		
 
		nb = i; nb++; if (nb==nodes.end()) nb=nodes.begin();
 
		
 
		my_area+=(*i)->x*(*nb)->y;
 
		my_area-=(*nb)->x*(*i)->y;
 
		my_intgrl_xx+= 
 
			((*i)->x*(*i)->x+
 
			 (*nb)->x*(*i)->x+
 
			 (*nb)->x*(*nb)->x ) *
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y);
 
		my_intgrl_xy+= 
 
			((*nb)->x*(*i)->y-
 
			 (*i)->x*(*nb)->y)*
 
			((*i)->x*(2*(*i)->y+(*nb)->y)+
 
			 (*nb)->x*((*i)->y+2*(*nb)->y));
 
		my_intgrl_yy+=
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y)*
 
			((*i)->y*(*i)->y+
 
			 (*nb)->y*(*i)->y+
 
			 (*nb)->y*(*nb)->y );
 
		my_intgrl_x+=
 
			((*nb)->x+(*i)->x)*
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y);
 
		my_intgrl_y+=
 
			((*nb)->y+(*i)->y)*
 
			((*i)->x*(*nb)->y-
 
			 (*nb)->x*(*i)->y);
 
	}
 
	
 
	
 
	//my_area/=2.0;
 
	my_area = fabs(my_area)/2.0;
 
	
 
	
 
	double intrx=my_intgrl_x/6.;
 
	double intry=my_intgrl_y/6.;
 
	double ixx=(my_intgrl_xx/12.)-(intrx*intrx)/my_area;
 
	double ixy=(my_intgrl_xy/24.)+(intrx*intry)/my_area;
 
	double iyy=(my_intgrl_yy/12.)-(intry*intry)/my_area;
 
	
 
	double rhs1=(ixx+iyy)/2., rhs2=sqrt( (ixx-iyy)*(ixx-iyy)+4*ixy*ixy )/2.;
 
    
 
	double lambda_b=rhs1+rhs2;
 
	
 
	// see: http://scienceworld.wolfram.com/physics/MomentofInertiaEllipse.html
 
	//    cerr << "n = " << n << "\n";
 
	
 
	// Vector eigenvectors[2];
 
	// eigenvectors[0] = Vector(-(-ixx + iyy ) + rhs2, ixy, 0);
 
	// eigenvectors[1] = Vector(-(-ixx + iyy ) - rhs2, ixy, 0);
 
	if (long_axis) {
 
		*long_axis = Vector(-ixy, lambda_b - ixx, 0);
 
		//   cerr << "ixx = " << ixx << ", ixy = " << ixy << ", iyy = " << iyy << ", my_area = " << my_area << endl;
 
	}
 
	
 
	if (width) {
 
		*width = 4*sqrt((rhs1-rhs2)/my_area);
 
	}
 
	
 
	return 4*sqrt(lambda_b/my_area);
 
    
 
	
 
	
 
}
 

	
 

	
 
// void CellBase::NodeRemoved(int n) {
 
//   for (list<Node *>::iterator i=nodes.begin();
 
//        i!=nodes.end();
 
//        i++) {
 
//     if ((*i)->Index()>n) {
 
//       (*i)->index--;
 
//     }
 
//   }
 
// }
 

	
 
void CellBase::ConstructNeighborList(void) {
 
	
 
	neighbors.clear();
 
	for (//list<Wall *>::const_reverse_iterator wit=walls.rbegin();
 
		 list<Wall *>::const_iterator wit=walls.begin();
 
		 // somehow the reverse_iterator returns by walls needs to be casted to const to let this work.
 
		 // it seems to me it is a bug in the STL implementation...
 
		 //wit!=(list<Wall *>::const_reverse_iterator)walls.rend();
 
		 wit!=walls.end();
 
		 wit++) {
 
		
 
		if ((*wit)->C1() != this) {
 
			neighbors.push_back((*wit)->C1());
 
		} else {
 
			neighbors.push_back((*wit)->C2());
 
		}
 
		
 
	}
 
	
 
	
 
	/*
 
	 for (list<CellBase *>::iterator e=neighbors.begin();
 
		  e!=neighbors.end();
 
		  e++) {
 
		 cerr << (*e)->Index() << " ";
 
		 if ((*e)->CellBase::BoundaryPolP()) {
 
			 cerr << " b ";
 
		 }
 
	 }
 
	 */
 
	// remove all boundary_polygons from the list
 
	
 
	
 
    
 
	list <CellBase *>::iterator e=neighbors.begin();
 
	at_boundary=false;
 
	
 
	do { 
 
		// Code crashes here after cutting off part of the leaf. I can't find the problem.
 
		// Leaving the "Illegal" walls in the simulation helps. (c1=-1 && c2=-1)
 
		// Work-around: define leaf primordium. Save to XML. Restart. Read XML file.
 
		// Sorry about this; I hope to solve this annoying issue later. RM :-).
 
		// All cells in neighbors seem to be okay (I might be messing some part of the memory elsewhere
 
		// during the cutting operation?).
 
		e = find_if(neighbors.begin(),neighbors.end(),mem_fun(&CellBase::BoundaryPolP));
 
		if (e!=neighbors.end()) {
 
			e=neighbors.erase(e);
 
			at_boundary=true;
 
		} else {
 
			break;
 
		}
 
  } while(1);
 
	
 
}
 

	
 
// CellBase constructs its neighbor list from its node lists
 
// Assumes, obviously, that the node lists are up to date
 
// (i.e. call ConstructConnections before calling this method)
 
// We'll keep this one private, anyway.
 
/* void CellBase::ConstructNeighborList(void) {
 

	
 
//  extern ofstream debug_stream;
 

	
 
neighbors.clear();
 

	
 
//  debug_stream << "Nodes: ";
 
//  copy(nodes.begin(),nodes.end(),ostream_iterator<Node>(debug_stream, " "));
 
//debug_stream << endl;
 

	
 
for (list<Node *>::const_iterator i=nodes.begin();
 
	 i!=nodes.end();
 
	 i++) {
 
    
 
    // collect all cells to which my nodes are connected on one list
 
    //transform((*i)->cells.begin(),(*i)->cells.end(), back_inserter(neighbors), mem_fun_ref(&Neighbor::CellBase));
 
	
 
    // index of next node 
 
    list<Node *>::const_iterator nn=i;
 
    ++nn;
 
    if (nn==nodes.end()) 
 
		nn=nodes.begin();
 
	
 
    //    debug_stream << "Node " << *i << ", Neighbor " << *nn << endl;
 
    // debug_stream << "Owners: ";
 
    //    copy((*i)->cells.begin(),(*i)->cells.end(),ostream_iterator<Neighbor>(debug_stream, " "));
 
    // debug_stream << endl;
 
    
 
    for (list<Neighbor>::const_iterator nb=(*i)->owners.begin();
 
		 nb!=(*i)->owners.end();
 
		 nb++) {
 
		
 
		// collect info about neighboring cells, not about myself
 
		if (nb->CellBase!=this) {
 
			
 
			// make sure the whole edge touches this putative neighbor
 
			// if (*nn == nb->nb1 || *nn == nb->nb2) {
 
			//walls.push_back( new Wall(*i,*nn,this,nb->CellBase) );
 
			//debug_stream << "Adding edge " << walls.back() << " to CellBase " << index << endl;
 
			//}
 
			
 
			neighbors.push_back( nb->CellBase );
 
		} 
 
    }
 

	
 

	
 
}
 

	
 
neighbors.sort();
 

	
 
list<CellBase *>::iterator e=unique(neighbors.begin(),neighbors.end());
 

	
 
// iterator e point to the end of the subsequence of unique elements
 
// remove every thing that comes after it
 

	
 
neighbors.erase(e, neighbors.end());
 

	
 
// okay, now neighbors contains all neighbors of this CellBase, including itself
 

	
 
// A future optimization for the diffusion algorithm: now we list
 
// each of the edges of a (curved) CellBase boundary separately.  We
 
// could keep track just of the total length per CellBase boundary
 

	
 
// the following is not necessary anymore. Is
 
// checked at earlier stage
 
// // remove myself from the list
 
//   e = find(neighbors.begin(),neighbors.end(),index);
 
//   if (e!=neighbors.end())
 
//   neighbors.erase(e);
 
//    
 

	
 
// remove boundary_polygon from the list (CellBase identity <0 )
 
e=neighbors.begin();
 
at_boundary=false;
 
do { 
 
    e = find_if(neighbors.begin(),neighbors.end(),mem_fun(&CellBase::BoundaryPolP));
 
    if (e!=neighbors.end()) {
 
		e=neighbors.erase(e);
 
		at_boundary=true;
 
    } else {
 
		break;
 
    }
 
} while(1);
 

	
 

	
 
}*/
 

	
 

	
 
/*void Cell::print_nblist(void) const {
 
//  cerr << "{ ";
 

	
 
for (list<Neighbor>::const_iterator i=nb_list.begin();
 
	 i!=nb_list.end();
 
	 i++) {
 
	//    cerr << "(" << i->c->index << " " << i->Dij << ")";
 
	
 
}
 
//  cerr << "}" << endl;
 
}
 
*/
 

	
 

	
 
// Tests whether Cell p (given as Vector, remember that Cell is a
 
// Vector) is within polygon formed by nearest neighbor cells
 
// 
 
// Based on algorithm and code by Paul Bourke, see
 
// http://astronomy.swin.edu.au/~pbourke/geometry/insidepoly/
 
//
 
// Note: works for 2D only; projects everything on z=0;
 
/*
 
#define MIN(x,y) (x < y ? x : y)
 
#define MAX(x,y) (x > y ? x : y)
 
 */
 
/*bool Cell::CellInsidePolygonP(Vector &p)
 
{
 
    int counter = 0;
 
    double xinters;
 
    Vector p1,p2;
 
	
 
    //p1 = polygon[0];
 
    p1 = *(nb_list.begin()->c);
 
	
 
    int N=nb_list.size();
 
    list<Neighbor>::const_iterator nb=nb_list.begin();
 
	
 
    for (int i=1;i<=N;i++) {
 
		
 
		nb++;
 
		
 
		if (nb!=nb_list.end()) {
 
			p2 = *(nb->c);
 
		} else {
 
			p2 = *(nb_list.begin()->c);
 
		}
 
		
 
		if (p.y > MIN(p1.y,p2.y)) {
 
			if (p.y <= MAX(p1.y,p2.y)) {
 
				if (p.x <= MAX(p1.x,p2.x)) {
 
					if (p1.y != p2.y) {
 
						xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
 
						if (p1.x == p2.x || p.x <= xinters)
 
							counter++;
 
					}
 
				}
 
			}
 
		}
 
		p1 = p2;
 
    }
 
	
 
    if (counter % 2 == 0)
 
		return false;
 
    else
 
		return true;
 
	
 
}*/
 

	
 

	
 
/* // at new position cell should be able to "see" all polygon sides
 
bool Cell::NewPointValidP(Vector &p) {
 
	
 
	//int ninvtri=0;
 
	for (list<Neighbor>::const_iterator nb=nb_list.begin();
 
		 nb!=nb_list.end();
 
		 nb++) {
 
		
 
		Vector p1=*(nb->c); // first neighbor
 
		list<Neighbor>::const_iterator nextv=nb; nextv++;
 
		
 
		
 
		if (nextv==nb_list.end()) {
 
			if (Boundary()==None) {
 
				nextv=nb_list.begin();
 
			} else continue;
 
		}
 
		
 
		Vector p2=*(nextv->c);
 
		
 
		Vector v1=(p1-p);
 
		Vector v2=(p2-p1);
 
		
 
		Vector cross=v1*v2;
 
		//    //cerr << "[" << cross << "]" << endl;
 
		
 
		if (cross.z<0) {
 
			// One of the triangles has "inverted".
 
			//if (Boundary()==None || ninvtri) 
 
			return false;
 
			//else 
 
			// accept one "inverted" triangle
 
			//ninvtri++;
 
		}
 
	}
 
	return true;
 
    
 
}*/
 

	
 

	
 

	
 

	
 
// void Cell::CheckForDivision(void) {
 
//  //  if (/* Chemical(0)<0.4 && */ /* differentiated cells do not divide */ area > 2*base_area /* || Length()>50 */) {
 

	
 
//  if (area > par.rel_cell_div_threshold * base_area ) {
 
//    /* remark no longer valid? //m->IncreaseCellCapacityIfNecessary();
 
//      // Note that calling Divide as follows prevents trouble if cell
 
//      // vector is relocated */
 
//      Divide();
 
//  }
 
//}
 

	
 
/* void Cell::CheckForGFDrivenDivision(void) {
 
if (area > base_area && chem[0]>par.gf_div_threshold) {
 
    //int ind=index;
 
    if (index==1) return; // petiole does not divide
 
	
 
    // remark no longer valid?
 
    //m->IncreaseCellCapacityIfNecessary();
 
    // Note that calling Divide as follows prevents trouble if cell
 
    // vector is relocated
 
    Vector horizontal(1,0,0);
 
    Vector vertical(0,1,0);
 
    double r; 
 
    if ((r=RANDOM())>par.vertdivprob) {
 
		DivideOverAxis(horizontal);
 
    } else {
 
		cerr << "[" << r << "]";
 
		DivideOverAxis(vertical);
 
    }
 
}
 
}
 
*/
 

	
 

	
 

	
 
// return (a measure of) the strain of this cell
 
/*Vector CellBase::Strain(void) const {
 
	
 
	cerr << "Sorry, CellBase::strain currently not implemented" << endl;
 
	std::exit(1);
 
	
 
	// Reason: we do not want to include "Node" in the plugins (Node::target_length below), and we do need Strain anyway...
 
	
 
	
 
	// go over all wall elements of the cell
 
	 Vector Fvec;
 
	
 
	for (list<Node *>::const_iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		
 
		list<Node *>::const_iterator nn=n; nn++;
 
		if (nn==nodes.end()) nn=nodes.begin();
 
		
 
		Vector wall_element = *(*n) - *(*nn);
 
		
 
		// assume k=1 (Hooke's constant), for now
 
		double Fscal  = (Node::target_length - wall_element.Norm())/Node::target_length;
 
		
 
		
 
		Fvec += Fscal * wall_element.Normalised();
 
		
 
	}
 
	
 
	return Fvec; 
 
} */
 

	
 

	
 

	
 
/* void Cell::Flux(double *flux, double D)  {
 

	
 
// Algorithm according to Rudge & Haseloff 2005
 
// (will we need to take cell area into account?)
 
// For the time being, we don't: assume cell area is 
 
// mainly determined by vacuole.
 

	
 
// Currently implements Rolland-Lagan-Mitchison algorithm
 
// Rolland-Lagan and Prusinkiewicz, The Plant Journal (2005), 44, 854-865
 

	
 
// currently I only implemented passive, diffusive transport 
 
// active transport will be added later
 

	
 
// loop over cell edges
 

	
 
for (int c=0;c<Cell::NChem();c++) flux[c]=0.;
 

	
 
for (list<Wall>::iterator i=walls.begin();
 
	 i!=walls.end();
 
	 i++) {
 
    
 
    
 
	// leaf cannot take up chemicals from environment ("no flux boundary")
 
	if (i->c2 < 0) continue;
 
    
 
	// calculate edge length 
 
	// (will later be updated during node displacement for efficiency)
 
	double edge_length = (m->nodes[i->n1]-m->nodes[i->n2]).Norm();
 
    
 
	// D is "background diffusion coefficient" (Rolland-Lagan)
 
	
 
	
 
	// flux depends on edge length and concentration difference */
 
	// i->phi = edge_length * ( /* i->D +*/ D ) * ( m->cells[i->c2].chem[0] - chem[0] );
 
	/*
 
	 if (m->cells[i->c1].index!=index) {
 
		 cerr << "Warning, bad cells boundary: " << m->cells[i->c1].index << ", " << index << endl;
 
	 }
 
	 
 
	 flux[0] += i->phi;
 
	 //double deltaD = par.alpha * (i->phi*i->phi) - par.gamma * i->D; // Note beta=0
 
	 //i->D += par.dt*deltaD; 
 
	 
 
	 //cerr << "[ i->D = " << i->D << ", deltaD = " << deltaD << "]";
 
	 //if (i->D > par.Dmax) i->D=par.Dmax;
 
	 
 
	 // first calculate all fluxes, we update diffusion coefficient afterwards.
 
	 
 
	 // cerr << "[ " << edge_length << ", " << m->cells[i->c2].chem[0] << " - " << chem[0] << "]";
 
	 
 
}
 

	
 

	
 
}
 
*/
 
	
 
	// Save the cell to a stream so we can reconstruct its state later
 
	void CellBase::Dump(ostream &os) const {
 
		
 
		
 
		os << index << " " << nodes.size() << endl;
 
		
 
		Vector::Dump(os);
 
		os << endl;
 
		
 
		for (list<Node *>::const_iterator i=nodes.begin();i!=nodes.end();i++) {
 
			os << *i << " ";
 
		}
 
		os << endl;
 
		
 
		
 
		os << index << " " << neighbors.size() << endl;
 
		for (list<CellBase *>::const_iterator i=neighbors.begin();i!=neighbors.end();i++) {
 
			os << *i << " ";
 
		}
 
		os << endl;
 
		
 
		os << walls.size() << endl;
 
		/*for (list<Wall *>::const_iterator i=walls.begin();i!=walls.end(); i++) {
 
			(*i)->Dump(os);
 
		}*/
 
		
 
		os << endl;
 
		
 
		os << NChem() << " ";
 
		for (int i=0;i<NChem();i++) {
 
			os << chem[i] << " ";
 
		}
 
		os << endl;
 
		
 
		os << NChem() << " ";
 
		for (int i=0;i<NChem();i++) {
 
			os << new_chem[i] << " ";
 
		}
 
		os << endl;
 
		
 
		os << boundary << " " << area << " " << target_area << " " << target_length << " " << fixed << " " << intgrl_xx << " " << intgrl_xy << " " << intgrl_yy << " " << intgrl_x << " " << intgrl_y << " " << source << " ";
 
		
 
		cellvec.Dump(os);
 
		
 
		os << " " << source_conc << " " << source_chem;
 
		os << endl;
 
		
 
	}
 
	
 
	
 
	
 
	void CellBase::UnfixNodes(void) {
 
		
 
		for (list<Node *>::const_iterator i=nodes.begin();
 
			 i!=nodes.end();
 
			 i++) {
 
			(*i)->Unfix();
 
		}
 
		
 
	}
 
	
 
	void CellBase::FixNodes(void) {
 
		
 
		for (list<Node *>::const_iterator i=nodes.begin();
 
			 i!=nodes.end();
 
			 i++) {
 
			(*i)->Fix();
 
		}
 
		
 
	}
 
	
 
	// returns true if cell is at border
 
	bool CellBase::AtBoundaryP(void) const {
 
		
 
		return at_boundary;
 
	}
 
	
 

	
 

	
 

	
 

	
 

	
 

	
 
QString CellBase::printednodelist(void) {
 
	QString info_string = "Nodelist = { ";
 
	for (list<Node *>::const_iterator i =  nodes.begin(); i!=nodes.end(); i++) {
 
		info_string += QString("%1 ").arg((*i)->Index());
 
	}
 
	info_string += " } ";
 
	return info_string;
 
}
 

	
src/cellbase.h
Show inline comments
 
/*
 
 *
 
 *  $Id$
 
 *
 
 *  This file is part of the Virtual Leaf.
 
 *
 
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 
 *  it under the terms of the GNU General Public License as published by
 
 *  the Free Software Foundation, either version 3 of the License, or
 
 *  (at your option) any later version.
 
 *
 
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
 *  GNU General Public License for more details.
 
 *
 
 *  You should have received a copy of the GNU General Public License
 
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
 *
 
 *  Copyright 2010 Roeland Merks.
 
 *
 
 */
 

	
 
// CellBase derives from Vector, where Vector is simply used as a Vertex
 

	
 
#ifndef _CELLBASE_H_
 
#define _CELLBASE_H_
 

	
 
#include <list>
 
#include <vector>
 
#include <iostream>
 
#include <QString>
 
#include <QDebug>
 

	
 
#include "vector.h"
 
#include "parameter.h"
 
#include "wall.h"
 
#include "warning.h"
 
#include "assert.h"
 

	
 
extern Parameter par;
 
using namespace std;
 

	
 
class Mesh;
 
class Node;
 
class CellBase;
 
class NodeSet;
 

	
 
struct ParentInfo {
 
	
 
	Vector polarization;
 
	double PINmembrane;
 
	double PINendosome;
 
	
 
};
 

	
 
// We need a little trick here, to make sure the plugin and the main application will see the same static datamembers
 
// otherwise each have their own instantation.
 
// My solution is as follow. I collect all original statics in a class. The main application instantiates it and
 
// has a static pointer to it. After loading the plugin I set a static pointer to the same class 
 
class CellsStaticDatamembers {
 
	
 
public:
 
	CellsStaticDatamembers(void) {
 
		ncells = 0;
 
		nchem = 0;
 
		base_area = 0.;
 
		cerr << "Constructor of CellsStaticDatamembers\n";
 
	}
 
	~CellsStaticDatamembers() {
 
		cerr << "Oops! Desctructor of CellsStaticDatamembers called\n";
 
	}
 
	int ncells;
 
	int nchem;
 
	double base_area;
 

	
 

	
 
};
 

	
 
class CellBase :  public QObject, public Vector 
 
{
 

	
 
	Q_OBJECT
 

	
 

	
 
	friend class Mesh;
 
	friend class CellInfo;
 
	friend class Node;
 
	friend class WallBase;
 
	friend class SimPluginInterface;
 
	
 
 public:
 
	CellBase(QObject *parent=0);
 
	CellBase(double x,double y,double z=0); // constructor
 
	
 
  virtual ~CellBase() {
 
	  delete[] chem;
 
	  delete[] new_chem;
 
	  if (division_axis) delete division_axis;
 
	  //cerr << "CellBase " << index << " is dying. " << endl;
 
  }
 
	
 
	CellBase(const CellBase &src); // copy constructor
 
	virtual bool BoundaryPolP(void) const { return false; } 
 
	
 
	
 
	//  CellBase(const Vector &src); // not allowed (we cannot know to which mesh 
 
	/// the CellBase will belong...)
 
    CellBase operator=(const CellBase &src); // assignment operator
 
    CellBase operator=(const Vector &src);
 
  
 
    void SetChemical(int chem, double conc);
 
    inline void SetNewChem(int chem, double conc) { 
 
      new_chem[chem] = conc;
 
    }
 
    void SetSource(int chem, double conc) {
 
      source=true;
 
      source_chem = chem;
 
      source_conc = conc;
 
	}
 
    
 
    void UnfixNodes(void);
 
    void FixNodes(void);
 
    void UnsetSource(void) {
 
      source = false;
 
    }
 
    
 
	inline bool Source(void) { return source; }
 
    enum boundary_type {None, Noflux, SourceSink, SAM};
 
    static const char * boundary_type_names[4];
 

	
 
    inline const char *BoundaryStr(void) { return boundary_type_names[boundary]; }
 
    
 
    ostream &print(ostream &os) const;
 

	
 
    inline double Chemical(int c) const { // returns the value of chemical c
 
    #ifdef _undefined_
 
      qDebug() << endl << "Entering cellbase::chemical(" << c << "), and nchem is: " << NChem() << "." << endl;
 
    #endif
 

	
 
      int nchem = NChem();
 

	
 
      #ifdef _undefined_
 
      if ((c<0) || (c>=nchem))
 
	MyWarning::warning("CellBase::Chemical says: index c is: %d, but nchem is: %d. Merely return zero", c, nchem);
 
      #endif
 

	
 
      return ((c<0) || (c>=nchem)) ? 0 : chem[c];
 
    }
 

	
 
    
 
    //void print_nblist(void) const;
 

	
 
    boundary_type SetBoundary(boundary_type bound) {
 
      if (bound!=None) {
 
	//area=0.;
 
	//length=0.;
 
      }
 
      return boundary=bound;
 
    }
 
  
 
    boundary_type ResetBoundary(void) {
 
      return boundary=None;
 
    }
 
    boundary_type Boundary(void) const {
 
      return boundary;
 
    }
 
    static int &NChem(void) {
 
      return static_data_members->nchem;
 
    }
 
  
 
    double CalcArea(void) const;
 
    double RecalcArea(void) {
 
      return area = CalcArea();
 
    }
 
    
 
    Vector Centroid(void) const;
 
  
 
    void SetIntegrals(void) const;
 
    
 
    double Length(Vector *long_axis = 0, double *width = 0) const;
 
    double CalcLength(Vector *long_axis = 0, double *width = 0) const;
 
    
 

	
 
    inline int Index(void) const {
 
      return index;
 
    }
 
  
 

	
 
    void SetTargetArea(double tar_ar) {
 
      target_area=tar_ar;
 
    }
 
    inline void SetTargetLength(double tar_l) {
 
      target_length=tar_l;
 
    }
 
    inline void SetLambdaLength(double lambda_length) {
 
      lambda_celllength = lambda_length;
 
    }
 
    inline double TargetArea(void) {
 
      return target_area;
 
    }
 
  
 
    inline void SetStiffness(double stiff) {
 
      stiffness = stiff;
 
    }
 

	
 
    inline double Stiffness(void) {
 
      return stiffness;
 
    }
 
    inline double EnlargeTargetArea(double da) {
 
      return target_area+=da;
 
    }
 
  
 
    inline double Area(void) const {
 
      return area;
 
    }
 
    
 
	inline void Divide(void) {
 
		flag_for_divide = true;
 
	}
 
	
 
	inline void DivideOverAxis(const Vector &v) {
 
		division_axis = new Vector(v);
 
		flag_for_divide = true;
 
	}
 
	
 
    //Vector Strain(void) const;
 

	
 
    inline double Circumference(void) const {
 
      double sum=0.;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum +=  (*w)->Length();
 
      }
 
      
 
      return sum;
 
    }
 

	
 
	QList<WallBase *> getWalls(void) {
 
		QList<WallBase *> wall_list;
 
		for (list<Wall *>::iterator i=walls.begin();
 
			 i!=walls.end();
 
			 i++) {
 
			wall_list << *i;
 
		}
 
		return wall_list;
 
	}
 
  //  void XFigPrint(std::ostream &os) const;
 
    
 
    void Dump(ostream &os) const;
 
   	
 
	QString printednodelist(void);
 
 
 
   // void OnDivide(ParentInfo &parent_info, CellBase &daughter);
 

	
 
    
 
    inline bool DeadP(void) { return dead; }
 
    inline void MarkDead(void) { dead  = true; }
 
    
 
	static double &BaseArea(void) { 
 
		return static_data_members->base_area;
 
	}
 
  
 
    void CheckForDivision(void);
 

	
 
	
 
    // write flux from neighboring cells into "flux"
 
    void Flux(double *flux, double *D); 
 
    inline bool FixedP(void) { return fixed; }
 
    inline bool Fix(void) {  FixNodes(); return (fixed=true); }
 
    inline bool Unfix(void) { UnfixNodes(); return (fixed=false);}
 
    inline void setCellVec(Vector cv) { cellvec = cv; }
 
    
 
	bool AtBoundaryP(void) const;
 
    
 
    static inline int &NCells(void) {
 
      return static_data_members->ncells;
 
    }
 

	
 
 
 
   
 
    inline void Mark(void) {
 
      marked=true;
 
    }
 
    inline void Unmark(void) {
 
      marked=false;
 
    }
 
    inline bool Marked(void) const {
 
      return marked;
 
    }
 

	
 
	//! Returns the sum of chemical "chem" of this CellBase's neighbors
 
    double SumChemicalsOfNeighbors(int chem) {
 
      double sum=0.;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum +=  (*w)->Length() * ( (*w)->c1!=this ? (*w)->c1->Chemical(chem) : (*w)->c2->Chemical(chem) );
 
      }
 
      return sum;
 
    }
 

	
 
    //! Generalization of the previous member function
 
    template<class P, class Op> P ReduceNeighbors(Op f) {
 
      P sum=0;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum += (*w)->c1 != this ? f( *((*w)->c1) ) : f ( *((*w)->c2) ); 
 
      }
 
      return sum;
 
    }
 

	
 
    //! The same, but now for the walls
 
    template<class P, class Op> P ReduceWalls(Op f, P sum) {
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum += f( **w ); 
 
      }
 
      return sum;
 
    }
 
	
 
	
 
    
 
    
 
    //! The same, but now for the walls AND neighbors
 
    template<class P, class Op> P ReduceCellAndWalls(Op f) {
 
      P sum = 0;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum += (*w)->c1 == this ? 
 
	  f( *((*w)->c1), *((*w)->c2), **w ) :  
 
	  f( *((*w)->c2), *((*w)->c1), **w );
 
      }
 
      return sum;
 
    }
 
    
 
	/* template<class Op> void LoopWalls(Op f) {
 
		for (list<Wall *>::const_iterator w=walls.begin();
 
			 w!=walls.end();
 
			 w++) {
 
			( **w)->f;
 
		}
 
	}*/
 
	
 
    //! Sum transporters at this CellBase's side of the walls
 
    double SumTransporters(int ch) {
 
      double sum=0.;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum += (*w)->getTransporter(this, ch);
 
      
 
      }
 
      
 
      return sum;
 
    }
 

	
 
    inline int NumberOfDivisions(void) { return div_counter; }
 
    
 
    //! Sum transporters at this CellBase's side of the walls
 
    double SumLengthTransporters(int ch) {
 
      double sum=0.;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum += (*w)->getTransporter(this, ch) * (*w)->Length();
 
      
 
      }
 
      
 
      return sum;
 
    }
 
    
 
	
 
    
 
    double SumLengthTransportersChemical(int trch, int ch) {
 
      double sum=0.;
 
      for (list<Wall *>::const_iterator w=walls.begin();
 
	   w!=walls.end();
 
	   w++) {
 
	sum += (*w)->getTransporter(this, trch) * ( (*w)->c1!=this ? (*w)->c1->Chemical(ch) : (*w)->c2->Chemical(ch) );
 
	
 
      }
 
      
 
      return sum;
 
    }
 
	inline int CellType(void) const { return cell_type; } 
 
	inline void SetCellType(int ct) { cell_type = ct; }
 

	
 
    
 
	static void SetNChem(int new_nchem) {
 
		if (NCells()) {
 
			MyWarning::error("CellBase::SetNChem says: not permitted, call SetNChem after deleting all cells.");
 
		} else {
 
			NChem() = new_nchem;
 
		}
 
	}
 
	
 
	inline double TargetLength() const { return target_length; } 
 

	
 
	static inline CellsStaticDatamembers *GetStaticDataMemberPointer(void) { return static_data_members; }
 
	
 
protected:
 
	// (define a list of Node* iterators)
 
	typedef list < list<Node *>::iterator > ItList;
 

	
 
    int index;
 

	
 
	inline void SetChemToNewchem(void) {
 
		for (int c=0;c<CellBase::NChem();c++) {
 
			chem[c]=new_chem[c];
 
		}
 
    }
 
    inline void SetNewChemToChem(void) {
 
		for (int c=0;c<CellBase::NChem();c++) {
 
			new_chem[c]=chem[c];
 
		}
 
    }
 
	inline double NewChem(int c) const { return new_chem[c]; }
 
	
 
 protected:
 
    list<Node *> nodes;
 
    void ConstructNeighborList(void);
 
	long wall_list_index (Wall *elem) const;
 

	
 
    // DATA MEMBERS
 
    
 
    // list of nodes, in clockwise order
 
  
 
    // a (non-ordered) list of neighboring cells (actually I think the
 
    // introduction of ConstructWalls() has made these
 
    // lists ordered (clockwise), but I am not yet 100% sure...).
 
    list<CellBase *> neighbors;
 

	
 
    list<Wall *> walls;
 
  
 
    double *chem;
 
    double *new_chem;
 
  
 
    boundary_type boundary;
 
    mutable double area;
 
    double target_area;
 
    double target_length;
 
    double lambda_celllength;
 

	
 
    double stiffness; // stiffness like in Hogeweg (2000)
 

	
 
    bool fixed;
 
    bool pin_fixed;
 
    bool at_boundary; 
 
    bool dead; 
 
	bool flag_for_divide;
 
	
 
	Vector *division_axis;
 
	
 
	int cell_type;
 
	
 
    //double length;
 
    //Vector meanflux;
 
    //int valence;
 
    
 
    // for length constraint
 
    mutable double intgrl_xx, intgrl_xy, intgrl_yy, intgrl_x, intgrl_y;
 
    
 
    bool source;
 
    Vector cellvec;
 
	
 
	// STATIC DATAMEMBERS MOVED TO CLASS
 
	static CellsStaticDatamembers *static_data_members;
 
	double source_conc;
 
    int source_chem;
 
	
 
    // PRIVATE MEMBER FUNCTIONS
 
    inline static void ClearNCells(void) {
 
      NCells()=0;
 
    }
 
    
 
    bool marked;
 
    int div_counter;
 
};
 

	
 
ostream &operator<<(ostream &os, const CellBase &v);
 

	
 
inline Vector PINdir(CellBase &here, CellBase &nb, Wall &w) {
 
	return w.getTransporter( &here, 1)  *  w.getInfluxVector(&here);
 
}
 

	
 

	
 
#endif
 

	
 

	
 

	
 

	
 

	
src/mesh.cpp
Show inline comments
 
/*
 
 *
 
 *  This file is part of the Virtual Leaf.
 
 *
 
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 
 *  it under the terms of the GNU General Public License as published by
 
 *  the Free Software Foundation, either version 3 of the License, or
 
 *  (at your option) any later version.
 
 *
 
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
 *  GNU General Public License for more details.
 
 *
 
 *  You should have received a copy of the GNU General Public License
 
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
 *
 
 *  Copyright 2010 Roeland Merks.
 
 *
 
 */
 

	
 
#include <string>
 
#include <algorithm>
 
#include <vector>
 
#include <sstream>
 
#include <cstdlib>
 
//#include <cerrno>
 
#include <cstring>
 
#include <numeric>
 
#include <functional>
 
#include <fstream>
 
#include <QPair>
 
#include "mesh.h"
 
#include "tiny.h"
 
#include "parameter.h"
 
#include "random.h"
 
#include "pi.h"
 
#include "parse.h"
 
#include "matrix.h"
 
#include "sqr.h"
 
#include "nodeset.h"
 
#include "nodeitem.h"
 
#include "simplugin.h"
 

	
 
#include <QDebug>
 
#include <set>
 
#include <iostream>
 
#include <iterator>
 

	
 
static const std::string _module_id("$Id$");
 

	
 
extern Parameter par;
 

	
 
void Mesh::AddNodeToCellAtIndex(Cell *c, Node *n, Node *nb1, Node *nb2, list<Node *>::iterator ins_pos) {
 
  c->nodes.insert(ins_pos, n);        
 
  n->owners.push_back( Neighbor(c, nb1, nb2 ) );
 
}
 

	
 

	
 
void Mesh::AddNodeToCell(Cell *c, Node *n, Node *nb1, Node *nb2) {
 
  
 
  c->nodes.push_back( n );
 
  n->owners.push_back( Neighbor(c, nb1, nb2 ) );
 
  
 
}
 

	
 
void Mesh::PerturbChem(int chemnum, double range) {
 
  
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 
    (*i)->chem[chemnum] += range*(RANDOM()-0.5);
 
    if ((*i)->chem[chemnum]<0.) (*i)->chem[chemnum]=0.;
 
  }
 
  
 
}
 

	
 
void Mesh::CellFiles(const Vector ll, const Vector ur) {
 
  
 
  Cell *cell = RectangularCell(ll,ur,0.001); 
 
  
 
  for (int c=0;c<Cell::NChem();c++) {
 
    cell->SetChemical(c,par.initval[c]);
 
  }
 
  
 
  cell->SetTargetArea(cell->CalcArea());
 
  
 
  Vector axis(1,0,0);
 
    
 
  // divide rectangle a number of times
 
  for (int i=0;i<6;i++) {
 
    IncreaseCellCapacityIfNecessary();
 
      
 
    vector <Cell *> current_cells = cells;
 
    for (vector<Cell *>::iterator j=current_cells.begin();
 
	 j!=current_cells.end();j++) {
 
      (*j)->DivideOverAxis(axis);
 
    }
 
    axis=axis.Perp2D();
 
    
 
  }
 
  
 
  IncreaseCellCapacityIfNecessary();
 
  
 
  axis=axis.Perp2D();
 
  
 
  vector <Cell *> current_cells = cells;
 
  for (vector<Cell *>::iterator j=current_cells.begin();
 
	 j!=current_cells.end();j++) {
 
   (*j)->DivideOverAxis(axis);
 
 }
 

	
 
  
 
 double sum_l=0; int n_l=0;
 
  for (list<Node *>::const_iterator i=cell->nodes.begin();
 
       i!=cell->nodes.end();
 
       i++) {
 
    list<Node *>::const_iterator nb=i; nb++; 
 
    if (nb==cell->nodes.end()) 
 
      nb=cell->nodes.begin();
 
    
 
    double l = (**nb-**i).Norm();
 
   
 
    sum_l += l;
 
    n_l++;
 
  
 
  }
 
  
 
  
 
  Node::target_length = sum_l/(double)n_l;
 
  // a bit more tension
 
  Node::target_length/=4.;
 
  
 
  SetBaseArea();
 

	
 
}
 

	
 
Cell *Mesh::RectangularCell(const Vector ll, const Vector ur, double rotation) {
 

	
 
  Cell *cell=AddCell(new Cell());
 
  cell->m=this;
 
  
 
  Matrix rotmat;
 
  rotmat.Rot2D(rotation); // rotation over 0,0
 
  
 
  Node *n1=AddNode(new Node(rotmat * ll));
 
  Node *n2=AddNode(new Node(rotmat * Vector(ll.x, ur.y,0)));
 
  Node *n3=AddNode(new Node(rotmat * ur));
 
  Node *n4=AddNode(new Node(rotmat * Vector(ur.x, ll.y,0)));
 
  
 
  n1->boundary=true;
 
  n2->boundary=true;
 
  n3->boundary=true;
 
  n4->boundary=true;
 

	
 
  //n1.fixed=n2.fixed=n3.fixed=n4.fixed=true;
 
  
 
  AddNodeToCell(cell, n4, 
 
		n1,
 
		n3);
 

	
 
  AddNodeToCell(cell, n3, 
 
		n4,
 
		n2);
 
  
 
  AddNodeToCell(cell, n2, 
 
		n3,
 
		n1);
 

	
 
  AddNodeToCell(cell, n1, 
 
		n2,
 
		n4);
 
  
 
  
 
  AddNodeToCell(boundary_polygon, n4, 
 
		n1,
 
		n3);
 
  AddNodeToCell(boundary_polygon, n3, 
 
		n4,
 
		n2);
 
  AddNodeToCell(boundary_polygon, n2, 
 
		n3,
 
		n1);
 
  AddNodeToCell(boundary_polygon, n1, 
 
		n2,
 
		n4);
 

	
 
  cell->setCellVec(Vector(0,1,0));
 

	
 
  boundary_polygon->m = this;
 
  boundary_polygon->area = 0;
 
  
 
  cell->area = cell->CalcArea();
 
  // target length is the length of the elements
 
  
 
  Node::target_length = ur.y-ll.y;
 
  // a bit more tension
 
  Node::target_length/=2;
 
 
 
  cell->SetIntegrals(); 
 
  cell->ConstructNeighborList();
 
  
 
  return cell;
 
}
 

	
 
Cell &Mesh::EllipticCell(double xc, double yc, double ra, double rb,  int nnodes, double rotation) {
 
  
 
  int first_node=Node::nnodes;
 
  //  nodes.reserve(nodes.size()+nnodes);
 
    
 

	
 
  //cells.push_back(Cell(xc,yc));
 
  Cell *c=AddCell(new Cell(xc,yc));
 
  c->m=this;
 
  
 
  for (int i=0;i<nnodes;i++) {
 
    
 
    double angle=2*Pi*(i/(double)nnodes);
 
    double x=xc+ra*cos(angle)*cos(rotation) - rb*sin(angle)*sin(rotation);
 
    double y=yc+ra*cos(angle)*sin(rotation) + rb*sin(angle)*cos(rotation);
 
    
 
    
 
    Node *n=AddNode(new Node(x,y,0));
 
    n->boundary = true;
 
    
 
  } 
 
  
 
  for (int i=0;i<nnodes;i++) {
 
    
 
    AddNodeToCell(c,
 
		  nodes[first_node + i],
 
		  nodes[first_node+ (nnodes+i-1)%nnodes],
 
		  nodes[first_node+ (i + 1)%nnodes]);
 
    AddNodeToCell(boundary_polygon,
 
		  nodes[first_node + i],
 
		  nodes[first_node+ (nnodes+i-1)%nnodes],
 
		  nodes[first_node+ (i + 1)%nnodes]);
 
  }
 
  
 
  boundary_polygon->m = this;
 
  boundary_polygon->area = 0;
 
  
 
  c->area = c->CalcArea();
 
  // target length is the length of the elements
 
  
 
  Node::target_length = (2 * ((ra +rb)/2.) * sin (Pi/nnodes));
 
  // a bit more tension
 
  Node::target_length/=2;
 

	
 
  //boundary_polygon = c;
 
  /*  list<int>::iterator nb;
 
  for (list<int>::iterator i=c->nodes.begin();
 
       i!=c->nodes.end();
 
       i++) {
 
    
 
    nb = i; nb++;
 
    if (nb==c->nodes.end()) {
 
      nb=c->nodes.begin();
 
    }
 
    int next = *nb;
 
    
 
    nb = i; 
 
    if (nb==c->nodes.begin()) {
 
      nb=c->nodes.end();
 
    } 
 
    nb--;
 
    int previous = *nb;
 
    
 
    
 
    getNode(*i).cells.push_back( Neighbor(boundary_polygon->index, next, previous) );
 
  }*/
 
  
 
  c->SetIntegrals(); 
 
  //c->ConstructNeighborList();
 
  
 
  //c->ConstructWalls();
 

	
 
  // initial cell has one wall with the outside world
 
  //c->walls.push_back( new Wall ( nodes.front(), nodes.front(), c, boundary_polygon )); 
 
  
 
  c->at_boundary=true;
 
  
 
  return *c;
 

	
 
  
 
}
 

	
 
Cell &Mesh::LeafPrimordium(int nnodes, double pet_length) {
 
  
 
  // first leaf cell
 

	
 
  int first_node=Node::nnodes;
 
  
 
  Cell *circle=AddCell(new Cell(0,0));
 
  circle->m=this;
 
  const double ra=10, rb=10;
 
  const double xc=0,yc=0;
 
  const double rotation=0;
 
  for (int i=0;i<nnodes;i++) {
 
    
 
    double angle=2*Pi*(i/(double)nnodes);
 
    double x=xc+ra*cos(angle)*cos(rotation) - rb*sin(angle)*sin(rotation);
 
    double y=yc+ra*cos(angle)*sin(rotation) + rb*sin(angle)*cos(rotation);
 
    
 
    
 
    Node *n=AddNode(new Node(x,y,0));
 
    
 
    /* if (angle > 1.25*Pi && angle < 1.75*Pi ) {
 
      n.sam = true;
 
      }*/
 
    
 
    AddNodeToCell(circle,
 
		  n,
 
		  nodes[first_node+ (nnodes+i-1)%nnodes],
 
		  nodes[first_node+ (i + 1)%nnodes]);
 
    
 
  }
 
  
 
  boundary_polygon->m = this;
 
  boundary_polygon->area = 0;
 
  
 
  circle->area = circle->CalcArea();
 
  // target length is the length of the elements
 
  
 
  Node::target_length = (2 * ((ra +rb)/2.) * sin (Pi/nnodes));
 
  // a bit more tension
 
  Node::target_length/=2;
 

	
 
  circle->SetIntegrals(); 
 
  
 
  //return c;
 

	
 
  circle->SetTargetArea(2*circle->Area());
 
  
 
  // Petiole: starts at both sides of the circular cell
 
  // get position of the (n/4)'th and (3*(n/4))'th node.
 
  
 
  list<Node *>::reverse_iterator it_n1=circle->nodes.rbegin();
 
  for (int i=0;i<nnodes/2;i++)
 
    it_n1++;
 
  it_n1--;
 
  
 
  list<Node *>::reverse_iterator it_n2=--circle->nodes.rend();
 
  /* for (int i=0;i<n/2;i++)
 
     it_n2++;*/
 
  
 
  Cell *petiole=AddCell(new Cell());
 

	
 
  Node *n1 = *it_n1;
 
  Node *n2 = *it_n2;
 
  
 
  Node *n3=AddNode( new Node ( *n2 + Vector( 0, pet_length, 0) ) );
 
  Node *n4=AddNode( new Node ( *n1 + Vector( 0, pet_length, 0) ) );
 

	
 
  n3->boundary=true;
 
  n4->boundary=true;
 

	
 
  AddNodeToCell(petiole, *it_n1, 
 
		n4,
 
		nodes[(*it_n2)->Index() 
 
		      + (( (*it_n1)->Index() - (*it_n2)->Index() )-1+nnodes)%nnodes]);
 

	
 
  
 
		
 
  list<Node *>::reverse_iterator i=it_n1; i++;
 
  for (;
 
       i!=it_n2; 
 
       //(++i) == circle->nodes.rend() ? i : i=circle->nodes.rbegin() ) {
 
       ++i) {
 
    AddNodeToCell(petiole,
 
		  *i,
 
		  nodes[(*it_n2)->Index() + (((*i)->Index()-(*it_n2)->Index()) + 1)%nnodes],
 
		  nodes[(*it_n2)->Index() + (((*i)->Index()-(*it_n2)->Index())-1+nnodes)%nnodes]);
 
    
 
  }
 
  
 

	
 
  AddNodeToCell(petiole, *it_n2, 
 
		*it_n2 + 1,
 
		n3);
 

	
 
  
 
  (*it_n2)->boundary=true;
 
  
 
  //petiole.nodes.push_back(n3.Index());
 
  //petiole.nodes.push_back(n4.Index());
 
  AddNodeToCell(petiole,
 
		n3,
 
		n2,
 
		n4);
 
  AddNodeToCell(petiole,
 
		n4,
 
		n3,
 
		n1);
 

	
 
  
 
  
 
  cerr << circle << endl;
 
  cerr << petiole << endl;
 
  
 
  AddNodeToCell(boundary_polygon, *it_n1, 
 
		n4,
 
		*it_n2 + ((*it_n1-*it_n2)+1)%nnodes); // is this gonna work?
 
  
 
  (*it_n1)->boundary=true;
 
  
 
  for (int i=0;i<nnodes;i++) {
 
    
 
    if (nodes[(first_node + i)]->owners.size()==1) {
 
      AddNodeToCell(boundary_polygon,
 
		    nodes[first_node +i],
 
		    nodes[first_node+ (nnodes+i-1)%nnodes],
 
		    nodes[first_node+ (i + 1)%nnodes]);
 
      
 
      nodes[first_node+i]->boundary=true;
 
    }
 
  }
 
  
 
  AddNodeToCell(boundary_polygon, *it_n2, 
 
		nodes[(nnodes+(*it_n2)->Index() - 1)%nnodes],
 
		n3);
 
  
 
  AddNodeToCell(boundary_polygon,
 
		n3,
 
		n2,
 
		n4);
 
  AddNodeToCell(boundary_polygon,
 
		n4,
 
		n3,
 
		n1);
 

	
 
  // make petiole solid
 
  for (list<Node *>::iterator i=petiole->nodes.begin();
 
       i!=petiole->nodes.end();
 
       i++) {
 
    (*i)->Fix();
 
  }
 
  petiole->Fix();
 

	
 
  petiole->area=petiole->CalcArea();
 
  petiole->target_area=petiole->area;  
 
  petiole->ConstructNeighborList();
 
  circle->ConstructNeighborList();
 
  boundary_polygon->ConstructConnections();
 
  boundary_polygon->ConstructNeighborList();
 

	
 
  circle->setCellVec(Vector(0,1,0));
 
  
 
  return *circle;
 
}
 

	
 
/*Cell &Mesh::Box() {
 
  
 
  
 
  
 
}*/
 

	
 

	
 
// return bounding box of mesh
 
void Mesh::BoundingBox(Vector &LowerLeft, Vector &UpperRight) {
 
   
 
  LowerLeft = **nodes.begin();
 
  UpperRight = **nodes.begin();
 
  for (vector<Node *>::iterator c=nodes.begin();
 
       c!=nodes.end();
 
       c++) {
 
    if ((*c)->x < LowerLeft.x)
 
      LowerLeft.x = (*c)->x;
 
    if ((*c)->y < LowerLeft.y)
 
      LowerLeft.y = (*c)->y;
 
    if ((*c)->z < LowerLeft.z)
 
      LowerLeft.z = (*c)->z;
 
    if ((*c)->x > UpperRight.x) 
 
      UpperRight.x = (*c)->x;
 
    if ((*c)->y > UpperRight.y) 
 
      UpperRight.y = (*c)->y;
 
    if ((*c)->z > UpperRight.z)
 
      UpperRight.z = (*c)->z;
 
  }
 
  
 
}
 

	
 

	
 
double Mesh::Area(void) {
 
  
 
  double area=0;
 
  vector<Cell *>::iterator i=cells.begin();
 
  while (i != cells.end()) {
 
    area += (*(i++))->Area();
 
  }
 
  return area;
 
}
 

	
 
void Mesh::SetBaseArea(void) {
 
  
 
  // Set base area to mean area. 
 
  // This method is typically called during initiation, after
 
  // defining the first cell
 
	Cell::BaseArea() = Area()/cells.size();
 
}
 

	
 
// for optimization, we moved Displace to Mesh
 

	
 
class DeltaIntgrl {
 

	
 
public:
 
  double area;
 
  double ix, iy;
 
  double ixx,ixy,iyy;
 
  DeltaIntgrl(double sarea,double six,double siy,double sixx,double sixy,double siyy) {
 
    area=sarea;
 
    ix=six;
 
    iy=siy;
 
    ixx=sixx;
 
    ixy=sixy;
 
    iyy=siyy;
 
  }
 
};
 

	
 
void Mesh::Clear(void) {
 
	
 
	// clear nodes
 
	for (vector<Node *>::iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	
 
	nodes.clear();
 
	Node::nnodes=0;
 
	
 
	node_insertion_queue.clear();
 
	// Clear NodeSets
 
	for (vector<NodeSet *>::iterator i=node_sets.begin();
 
		 i!=node_sets.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	
 
	node_sets.clear();
 
	time = 0;
 
	
 
	// clear cells
 
	
 
	for (vector<Cell *>::iterator i=cells.begin();
 
		 i!=cells.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	
 
	cells.clear();
 
	Cell::NCells() = 0;
 
	
 
	delete boundary_polygon;
 
	
 
	// Clear walls
 
	for (list<Wall *>::iterator i=walls.begin();
 
		 i!=walls.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	
 
	walls.clear();
 
	WallBase::nwalls = 0;
 
	//tmp_walls->clear();
 
	
 
	shuffled_cells.clear();
 
	shuffled_nodes.clear();
 
	//Cell::ncells=0;
 
	/*    Cell::ClearNCells();
 
	 Node::nnodes=0;
 
	 
 
	 cells.clear();
 
	 nodes.clear();
 
	 shuffled_cells.clear();
 
	 shuffled_nodes.clear();
 
	 node_insertion_queue.empty();
 
	 
 
	 cerr << "Meshed cleared: cells: " << cells.size() << ", nodes: " << nodes.size() << endl;
 
	 */
 
	
 
	cerr << "cells.size() = " << cells.size() << endl;
 
	cerr << "walls.size() = " << walls.size() << endl;
 
	cerr << "nodes.size() = " << nodes.size() << endl;
 
}
 

	
 
double Mesh::DisplaceNodes(void) {
 

	
 
  MyUrand r(shuffled_nodes.size());
 
  random_shuffle(shuffled_nodes.begin(),shuffled_nodes.end(),r);
 
  
 
  double sum_dh=0;
 
  
 
  list<DeltaIntgrl> delta_intgrl_list;
 
  
 
  for_each( node_sets.begin(), node_sets.end(), mem_fun( &NodeSet::ResetDone ) );
 
  
 
  for (vector<Node *>::const_iterator i=shuffled_nodes.begin();
 
       i!=shuffled_nodes.end();
 
       i++) {
 
    
 
    //int n=shuffled_nodes[*i];
 
    Node &node(**i);
 
    
 
    // Do not allow displacement if fixed
 
    //if (node.fixed) continue;
 
    
 
    if (node.DeadP()) continue;
 
    
 
    // Attempt to move this cell in a random direction
 
    double rx=par.mc_stepsize*(RANDOM()-0.5); // was 100.
 
    double ry=par.mc_stepsize*(RANDOM()-0.5);
 
    
 
    // Uniform with a circle of radius par.mc_stepsize
 
    /* double r = RANDOM() * par.mc_stepsize;
 
       double th = RANDOM()*2*Pi;
 
       
 
       double rx = r * cos(th);
 
       double ry = r * sin(th);
 
    */
 
    Vector new_p(node.x+rx,node.y+ry,0);
 
    Vector old_p(node.x,node.y,0);
 
    
 
    /* if (node.boundary  && boundary_polygon->MoveSelfIntersectsP(n,  new_p )) {
 
    // reject if move of boundary results in self intersection
 
    continue;
 
    }*/
 
    
 

	
 
    if (node.node_set) {
 
		// move each node set only once
 
		if (!node.node_set->DoneP()) 
 
			node.node_set->AttemptMove(rx,ry);
 
    
 
    } else {
 
      
 
      // for all cells to which this node belongs:
 
      //   calculate energy difference
 
      
 
      double area_dh=0.;
 
      double length_dh=0.;
 
      double bending_dh=0.;
 
      double cell_length_dh=0.;
 
      double alignment_dh=0.;
 
      
 
      double old_l1=0.,old_l2=0.,new_l1=0.,new_l2=0.;
 
      
 
      double sum_stiff=0.;
 
      double dh=0.;
 
      
 
      for (list<Neighbor>::const_iterator cit=node.owners.begin();
 
	   cit!=node.owners.end();
 
	   cit++) {
 
	
 
	//Cell &c=m->getCell(cit->cell);
 
	//Cell &c=cit->cell->BoundaryPolP()?*boundary_polygon:*(cit->cell);
 
	Cell &c=*((Cell *)(cit->cell));
 
	//Cell &c=cells[cit->cell];
 
	if (c.MoveSelfIntersectsP(&node,  new_p )) {
 
	  // reject if move results in self intersection
 
	  //
 
	  // I know: using goto's is bad practice... except when jumping out
 
	  // of deeply nested loops :-)
 
	  //cerr << "Rejecting due to self-intersection\n";
 
	  goto next_node;
 
	}
 
	
 
	// summing stiffnesses of cells. Move has to overcome this minimum required energy.
 
	sum_stiff += c.stiffness;
 
	// area - (area after displacement): see notes for derivation
 
	//Vector i_min_1 = m->getNode(cit->nb1);
 
	
 
	Vector i_min_1 = *(cit->nb1);
 
      //Vector i_plus_1 = m->getNode(cit->nb2);
 
	Vector i_plus_1 = *(cit->nb2);
 
	
 

	
 
	// We must double the weights for the perimeter (otherwise they start bulging...)
 
	double w1, w2;
 
	if (node.boundary && cit->nb1->boundary) 
 
#ifdef FLEMING
 
	  w1 = par.rel_perimeter_stiffness;
 
#else
 
	w1=2;
 
#endif
 
	else
 
	  w1 = 1;
 
	
 
	if (node.boundary && cit->nb2->boundary) 
 
#ifdef FLEMING
 
	  w2 = par.rel_perimeter_stiffness;
 
#else
 
	w2 = 2;
 
#endif
 
	else 
 
	  w2 = 1;
 
	
 
	//if (cit->cell>=0) {
 
	if (!cit->cell->BoundaryPolP()) {
 
	  double delta_A = 0.5 * ( ( new_p.x - old_p.x ) * (i_min_1.y - i_plus_1.y) +
 
				   ( new_p.y - old_p.y ) * ( i_plus_1.x - i_min_1.x ) );
 
	  
 
	  area_dh +=  delta_A * (2 * c.target_area - 2 * c.area + delta_A);
 

	
 
	  
 
	  // cell length constraint
 
	  // expensive and not always needed
 
	  // so we check the value of lambda_celllength
 
	  
 
	  if (/* par.lambda_celllength */  cit->cell->lambda_celllength) {
 
	    
 
	    double delta_ix = 
 
	      (i_min_1.x + new_p.x)
 
	      * (new_p.x * i_min_1.y- i_min_1.x * new_p.y) +
 
	      (new_p.x + i_plus_1.x)
 
	      * (i_plus_1.x * new_p.y- new_p.x * i_plus_1.y) -
 
	      
 
	      (i_min_1.x + old_p.x)
 
	      * (old_p.x * i_min_1.y- i_min_1.x * old_p.y) -
 
	      (old_p.x + i_plus_1.x)
 
	      * (i_plus_1.x * old_p.y - old_p.x * i_plus_1.y);
 
	    
 
	
 
	    double delta_iy =
 
	      (i_min_1.y + new_p.y)
 
	      * (new_p.x * i_min_1.y- i_min_1.x * new_p.y) +
 
	      (new_p.y + i_plus_1.y)
 
	      * (i_plus_1.x * new_p.y- new_p.x * i_plus_1.y) -
 
	      
 
	      (i_min_1.y + old_p.y)
 
	      * (old_p.x * i_min_1.y- i_min_1.x * old_p.y) -
 
	      (old_p.y + i_plus_1.y)
 
	      * (i_plus_1.x * old_p.y - old_p.x * i_plus_1.y);
 
	    
 
	    
 
	    double delta_ixx = 
 
	      (new_p.x*new_p.x+
 
	       i_min_1.x*new_p.x+
 
	       i_min_1.x*i_min_1.x ) *
 
	      (new_p.x*i_min_1.y - i_min_1.x*new_p.y) +
 
	      
 
	      (i_plus_1.x*i_plus_1.x+
 
	       new_p.x*i_plus_1.x+
 
	       new_p.x*new_p.x ) *
 
	      (i_plus_1.x*new_p.y - new_p.x*i_plus_1.y) -
 
	      
 
	      (old_p.x*old_p.x+
 
	       i_min_1.x*old_p.x+
 
	       i_min_1.x*i_min_1.x ) *
 
	      (old_p.x*i_min_1.y - i_min_1.x*old_p.y) -
 
	      
 
	      (i_plus_1.x*i_plus_1.x+
 
	       old_p.x*i_plus_1.x+
 
	       old_p.x*old_p.x ) *
 
	      (i_plus_1.x*old_p.y - old_p.x*i_plus_1.y);
 
	    
 
	    
 
	    double delta_ixy =
 
	      (i_min_1.x*new_p.y-
 
	       new_p.x*i_min_1.y)*
 
	      (new_p.x*(2*new_p.y+i_min_1.y)+
 
	       i_min_1.x*(new_p.y+2*i_min_1.y)) +
 
	      
 
	      (new_p.x*i_plus_1.y-
 
	       i_plus_1.x*new_p.y)*
 
	      (i_plus_1.x*(2*i_plus_1.y+new_p.y)+
 
	       new_p.x*(i_plus_1.y+2*new_p.y)) -
 
	      
 
	      (i_min_1.x*old_p.y-
 
	       old_p.x*i_min_1.y)*
 
	      (old_p.x*(2*old_p.y+i_min_1.y)+
 
	       i_min_1.x*(old_p.y+2*i_min_1.y)) -
 
	      
 
	      (old_p.x*i_plus_1.y-
 
	       i_plus_1.x*old_p.y)*
 
	      (i_plus_1.x*(2*i_plus_1.y+old_p.y)+
 
	       old_p.x*(i_plus_1.y+2*old_p.y));
 
	    
 
	    
 
	    double delta_iyy = 
 
	      (new_p.x*i_min_1.y-
 
	       i_min_1.x*new_p.y)*
 
	      (new_p.y*new_p.y+
 
	       i_min_1.y*new_p.y+
 
	       i_min_1.y*i_min_1.y ) + 
 
	      
 
	      (i_plus_1.x*new_p.y-
 
	       new_p.x*i_plus_1.y)*
 
	      (i_plus_1.y*i_plus_1.y+
 
	       new_p.y*i_plus_1.y+
 
	       new_p.y*new_p.y ) -
 
	      
 
	      (old_p.x*i_min_1.y-
 
	       i_min_1.x*old_p.y)*
 
	      (old_p.y*old_p.y+
 
	       i_min_1.y*old_p.y+
 
	       i_min_1.y*i_min_1.y ) -
 
	      
 
	      (i_plus_1.x*old_p.y-
 
	       old_p.x*i_plus_1.y)*
 
	      (i_plus_1.y*i_plus_1.y+
 
	       old_p.y*i_plus_1.y+
 
	       old_p.y*old_p.y );
 
	    
 
	    delta_intgrl_list.push_back(DeltaIntgrl(delta_A,delta_ix,delta_iy,delta_ixx,delta_ixy,delta_iyy));
 
	    
 
	    Vector old_axis;
 
	    double old_celllength = c.Length(&old_axis);
 
	    old_axis=old_axis.Normalised().Perp2D();
 
	    
 
	    // calculate length after proposed update
 
	    double intrx=(c.intgrl_x-delta_ix)/6.;
 
	    double intry=(c.intgrl_y-delta_iy)/6.;
 
	    double ixx=((c.intgrl_xx-delta_ixx)/12.)-(intrx*intrx)/(c.area-delta_A);
 
	    double ixy=((c.intgrl_xy-delta_ixy)/24.)+(intrx*intry)/(c.area-delta_A);
 
	    double iyy=((c.intgrl_yy-delta_iyy)/12.)-(intry*intry)/(c.area-delta_A);
 
	    
 
	    double rhs1=(ixx+iyy)/2., rhs2=sqrt( (ixx-iyy)*(ixx-iyy)+4*ixy*ixy )/2.;
 
	    
 
	    double lambda_b=rhs1+rhs2;
 
	    
 
	    
 
	    double new_celllength=4*sqrt(lambda_b/(c.area-delta_A));
 
	    //cerr << "new_celllength = "  << new_celllength << endl;
 
	    //cerr << "target_length = "  << c.target_length << endl;
 
	    
 
	    cell_length_dh += c.lambda_celllength * ( DSQR(c.target_length - new_celllength) - DSQR(c.target_length-old_celllength) );
 
	    
 
	    Vector norm_long_axis(lambda_b - ixx, ixy, 0);
 
	    norm_long_axis.Normalise();
 
	    
 
	    double alignment_before = InnerProduct(old_axis, c.cellvec);
 
	    double alignment_after = InnerProduct(norm_long_axis, c.cellvec);
 
	    
 
	    /* cerr << "Delta alignment = " << alignment_before - alignment_after << endl;
 
	       cerr << "Old alignment is " << alignment_before << ", new alignment is " << alignment_after << endl;
 
	       cerr << "Old axis is " << old_axis << ", new axis is " << norm_long_axis << endl; 
 
	    */
 
	    alignment_dh += alignment_before - alignment_after;
 
	    
 
	    /* cerr << "alignment_dh  = " << alignment_dh << endl;
 
	       cerr << "cellvec = " << c.cellvec << endl;*/
 
	    
 
	  } else {
 
	    // if we have no length constraint, still need to update area
 
	    delta_intgrl_list.push_back(DeltaIntgrl(delta_A,0,0,0,0,0));
 
	    
 
	  }
 
	  
 
	  old_l1=(old_p-i_min_1).Norm();
 
	  old_l2=(old_p-i_plus_1).Norm();
 
	  new_l1=(new_p-i_min_1).Norm();
 
	  new_l2=(new_p-i_plus_1).Norm();
 
	  
 
	  
 
	  
 
	  
 
	  static int count=0;
 
	  // Insertion of nodes (cell wall yielding)
 
	  if (!node.fixed) {
 
	    if (old_l1 > 4*Node::target_length && !cit->nb1->fixed) {
 
	      node_insertion_queue.push( Edge(cit->nb1, &node) );
 
	    }
 
	    if (old_l2 > 4*Node::target_length && !cit->nb2->fixed) {
 
	      node_insertion_queue.push( Edge(&node, cit->nb2 ) );
 
	    }
 
	    count++;
 
	    /*length_dh += 2*Node::target_length * (old_l1 + old_l2 - new_l1 - new_l2) 
 
	      + DSQR(new_l1) - DSQR(old_l1) + DSQR(new_l2) - DSQR(old_l2);*/
 
	  }
 
	  /* length_dh += 2*Node::target_length * ( w1*(old_l1 - new_l1) + 
 
	     w2*(old_l2 - new_l2) ) +
 
	     w1*(DSQR(new_l1) 
 
	     - DSQR(old_l1)) 
 
	     + w2*(DSQR(new_l2) 
 
	     - DSQR(old_l2)); */
 
	  
 
	  
 
	  /*	if (c.cellvec.ManhattanNorm()!=0) { 
 
	    
 
	  // wall element length constraint
 
	  double old_aniso1, old_aniso2;
 
	  double new_aniso1, new_aniso2;
 
	  
 
	  // anisotropic expansion?
 
	  old_aniso1 = 1 + par.lambda_aniso*(1 - fabs(InnerProduct((old_p-i_min_1), c.cellvec))/old_l1);
 
	  old_aniso2 = 1 + par.lambda_aniso*(1 - fabs(InnerProduct((old_p-i_plus_1), c.cellvec))/old_l2);
 
	  new_aniso1 = 1 + par.lambda_aniso*(1 - fabs(InnerProduct((new_p-i_min_1),  c.cellvec))/new_l1);
 
	  new_aniso2 = 1 + par.lambda_aniso*(1 - fabs(InnerProduct((new_p-i_plus_1), c.cellvec))/new_l2);
 
	  
 
	  
 
	  length_dh += w1 * ( new_aniso1 * DSQR(new_l1 - Node::target_length) -
 
	  old_aniso1 * DSQR(old_l1 - Node::target_length) )
 
	  +  w2 * ( new_aniso2 * DSQR(new_l2 - Node::target_length) -
 
	  old_aniso2 * DSQR(old_l2 - Node::target_length) );
 
	  
 
	  } else {
 
	  */	  
 
	  length_dh += 2*Node::target_length * ( w1*(old_l1 - new_l1) + 
 
						 w2*(old_l2 - new_l2) ) +
 
	    w1*(DSQR(new_l1) 
 
		- DSQR(old_l1)) 
 
	    + w2*(DSQR(new_l2) 
 
		  - DSQR(old_l2));
 
	  
 
	  
 
	  //}
 
	  
 
	  
 
	  
 
	}
 
	
 
	// bending energy also holds for outer boundary
 
	// first implementation. Can probably be done more efficiently
 
	// calculate circumcenter radius (gives local curvature)
 
	// the ideal bending state is flat... (K=0)
 
	// if (cit->cell==-1 && node.cells.size()>2 /* boundary_pol, cell and a second cell */)  {
 
	{
 
	  // strong bending energy to resist "cleaving" by division planes
 
	  double r1, r2, xc, yc;
 
	  CircumCircle(i_min_1.x, i_min_1.y, old_p.x, old_p.y, i_plus_1.x, i_plus_1.y,
 
		       &xc,&yc,&r1);
 
	  CircumCircle(i_min_1.x, i_min_1.y, new_p.x, new_p.y, i_plus_1.x, i_plus_1.y,
 
		       &xc,&yc, &r2);
 
	  
 
		if (r1<0 || r2<0) {
 
			MyWarning::warning("r1 = %f, r2 = %f",r1,r2);
 
		}
 
		bending_dh += DSQR(1/r2 - 1/r1);
 
		//bending_dh += ( DSQR(1/r2) - DSQR(1/r1) );
 
		
 
	  //cerr << "bending_dh = " << par.bend_lambda*bending_dh << endl;
 
	  
 
	}
 
	/*cerr << "Bending = " <<  ( DSQR(1/r2) - DSQR(1/r1))  << endl;
 
	  cerr << node.index << ": " << bending_dh << " (" << r1 << ", " << r2 << ") " << cit->nb1 << ", " << cit->nb2 << ")" << endl;
 
	  }*/
 
	/*else
 
	  bending_dh += ( DSQR(1/r2) - DSQR(1/r1) );*/
 
        
 
	
 
	/*if (cit->cell==-1) {
 
	  cerr << node.index << ": " << bending_dh << " (" << r1 << ", " << r2 << ") " << cit->nb1 << ", " << cit->nb2 << ")" << endl;
 
	  }*/
 
	
 
	//bending_dh += r1 - r2;
 
	
 
      }
 
      
 
      //const double bend_lambda = 100000;
 
      //const double bend_lambda = 0;
 
      
 
      /* double dh = //(area_dev_sum_after - area_dev_sum_before) +
 
	 area_dh + par.lambda_celllength * cell_length_dh +
 
	 par.lambda_length * length_dh + par.bend_lambda * bending_dh + par.alignment_lambda * alignment_dh;*/
 
      
 
      dh = //(area_dev_sum_after - area_dev_sum_before) +
 
	area_dh + cell_length_dh +
 
	par.lambda_length * length_dh + par.bend_lambda * bending_dh + par.alignment_lambda * alignment_dh;
 
      
 
      //cerr << "cell_length_dh = " << par.lambda_celllength * cell_length_dh << endl;
 
      //(length_constraint_after - length_constraint_before);
 
      
 
      if (node.fixed) {
 
	
 
	// search the fixed cell to which this node belongs
 
	// and displace these cells as a whole
 
	// WARNING: undefined things will happen for connected fixed cells...
 
	for (list<Neighbor>::iterator c=node.owners.begin();
 
	     c!=node.owners.end();
 
	     c++) {
 
	  if (!c->cell->BoundaryPolP() && c->cell->FixedP()) {
 
	  sum_dh+=c->cell->Displace(rx,ry,0);
 
	  }
 
	}
 
      } else {
 
	
 
    
 
	if (dh<-sum_stiff || RANDOM()<exp((-dh-sum_stiff)/par.T)) {
 
	  
 
	  // update areas of cells
 
	  list<DeltaIntgrl>::const_iterator di_it = delta_intgrl_list.begin();
 
	  for (list<Neighbor>::iterator cit=node.owners.begin();
 
	       cit!=node.owners.end();
 
	       ( cit++) ) {
 
	    //m->getCell(cit->cell).area -= *da_it;
 
	    //if (cit->cell>=0) {
 
	    if (!cit->cell->BoundaryPolP()) {
 
	      cit->cell->area -= di_it->area;
 
	      if (par.lambda_celllength) {
 
		cit->cell->intgrl_x -= di_it->ix;
 
		cit->cell->intgrl_y -= di_it->iy;
 
		cit->cell->intgrl_xx -= di_it->ixx;
 
		cit->cell->intgrl_xy -= di_it->ixy;
 
		cit->cell->intgrl_yy -= di_it->iyy;
 
	      }
 
	      di_it++;
 
	    }
 
	  }
 
	  
 
	  double old_nodex, old_nodey;
 
	  
 
	  old_nodex=node.x;
 
	  old_nodey=node.y;
 
	  
 
	  node.x = new_p.x;
 
	  node.y = new_p.y;
 
	  
 
	  for (list<Neighbor>::iterator cit=node.owners.begin();
 
	       cit!=node.owners.end();
 
	       ( cit++) ) {
 
	    
 
	    /*   if (cit->cell >= 0 && cells[cit->cell].SelfIntersect()) {
 
		 node.x = old_nodex;		       
 
		 node.y = old_nodey;
 
		 goto next_node;
 
	       }*/
 
	  }
 
	  sum_dh += dh;
 
	}  
 
      }
 
    } 
 
    next_node:
 
      delta_intgrl_list.clear();//dA_list.clear();
 
      
 
    }
 
    
 
    return sum_dh;
 
    
 
}
 
				   
 

	
 
void Mesh::InsertNode(Edge &e) {
 

	
 

	
 
  // Construct a new node in the middle of the edge
 
  Node *new_node = AddNode( new Node ( ( *e.first + *e.second )/2 ) );
 
  
 
  // if new node is inserted into the boundary
 
  // it will be part of the boundary, fixed, and source, too
 

	
 
  // The new node is part of the boundary only if both its neighbors are boundary nodes and the boundray proceeds from first to second.
 
  new_node->boundary = (e.first->BoundaryP() && e.first->BoundaryP()) && ((findNextBoundaryNode(e.first))->Index() == e.second->Index());
 
  new_node->fixed = e.first->fixed && e.second->fixed;
 
  new_node->sam = new_node->boundary && (e.first->sam || e.second->sam);
 
  
 
  // insert it into the boundary polygon;
 
  /* if (new_node->boundary) {
 
    
 
  // find the position of the first node in the boundary
 
  list<Node *>::iterator ins_pos = find
 
  (boundary_polygon->nodes.begin(),
 
  boundary_polygon->nodes.end(),
 
  e.first);
 
  // ... second node comes before or after it ...
 
  if (*(++ins_pos!=boundary_polygon->nodes.end()?
 
  ins_pos:boundary_polygon->nodes.begin())!=e.second) {
 
      
 
  boundary_polygon->nodes.insert(((ins_pos--)!=boundary_polygon->nodes.begin()?ins_pos:(--boundary_polygon->nodes.end())), new_node);
 
     
 
  // .. set the neighbors of the new node ...
 
  // in this case e.second and e.first are inverted
 
  new_node->owners.push_back( Neighbor(boundary_polygon, e.second, e.first ) );
 
  //cerr << "pushing back " << Neighbor(boundary_polygon->index, e.second, e.first ) << endl;
 
  } else {
 
  // insert before second node, so leave ins_pos as it is,
 
  // that is incremented
 
  boundary_polygon->nodes.insert(ins_pos, new_node);
 
      
 
  // .. set the neighbors of the new node ...
 
  new_node->owners.push_back( Neighbor(boundary_polygon, e.first, e.second ) );
 
  // cerr << "pushing back " << Neighbor(boundary_polygon->index, e.second, e.first ) << endl;
 
  }
 
    
 
  }*/
 
  
 
  
 
  list<Neighbor> owners;
 
    
 
  // push all cells owning the two nodes of the divided edges
 
  // onto a list
 
  copy(e.first->owners.begin(),
 
       e.first->owners.end(),
 
       back_inserter(owners));
 
  copy(e.second->owners.begin(),
 
       e.second->owners.end(),
 
       back_inserter(owners));
 

	
 
  //copy(owners.begin(), owners.end(), ostream_iterator<Neighbor>(cerr, " "));
 
  //cerr << endl;
 
  
 
  // sort the nodes
 
  owners.sort( mem_fun_ref( &Neighbor::Cmp ) );
 
  
 
  //  extern ofstream debug_stream;
 
  
 
  //  debug_stream << "Nodes " << e.first << " and " << e.second << endl;
 
  //  copy(owners.begin(), owners.end(), ostream_iterator<Neighbor>(debug_stream, " "));
 
  //  debug_stream << endl;
 
  
 
  // the duplicates in this list indicate cells owning this edge  
 
  list<Neighbor>::iterator c=owners.begin();
 
  while (c!=owners.end()) {
 
    c=adjacent_find(c,owners.end(),  neighbor_cell_eq);
 
    
 
    
 
    if (c!=owners.end()) { // else break;
 
	
 
      //      debug_stream << "Cell " << c->cell << " owns Edge " << e << endl;
 
 
 
      //if (c->cell>=0) {
 
      //if (!c->cell->BoundaryPolP()) {
 
	// find the position of the edge's first node in cell c...
 
	list<Node *>::iterator ins_pos = find
 
	  (c->cell->nodes.begin(),
 
	   c->cell->nodes.end(),
 
	   e.first);
 
	// ... second node comes before or after it ...
 

	
 
	// XXXX probably this test is always false XXXX: No, works okay.
 
	if (*(++ins_pos!=c->cell->nodes.end()?
 
	      ins_pos:c->cell->nodes.begin())!=e.second) {
 
	  c->cell->nodes.insert(((ins_pos--)!=c->cell->nodes.begin()?ins_pos:(--c->cell->nodes.end())), new_node);
 
	  //cells[c->cell].nodes.insert(--ins_pos, new_node->index);
 
	  // .. set the neighbors of the new node ...
 
	  // in this case e.second and e.first are inverted
 
	  //  cerr << "Inverted\n";
 
	  new_node->owners.push_back( Neighbor(c->cell, e.second, e.first ) );
 
	} else {
 
	  // insert before second node, so leave ins_pos as it is,
 
	  // that is incremented
 
	  c->cell->nodes.insert(ins_pos, new_node);	
 
	  // .. set the neighbors of the new node ...
 
	  // cerr << "Not inverted\n";
 
	  new_node->owners.push_back( Neighbor(c->cell, e.first, e.second ) );
 
	}
 
      
 
	// redo the neighbors:
 
	//}
 
      
 

	
 
      // - find cell c among owners of Node e.first
 
      list<Neighbor>::iterator cpos=
 
	find_if( e.first->owners.begin(),
 
		 e.first->owners.end(),
 
		 bind2nd( mem_fun_ref(&Neighbor::CellEquals), c->cell->Index()) );
 
	
 
      // - correct the record
 
      if (cpos->nb1 == e.second) {
 
	cpos->nb1 = new_node;
 
      } else 
 
	if (cpos->nb2 == e.second) {
 
	  cpos->nb2 = new_node;
 
	}
 
      
 
      // - same for Node e.second
 
      cpos=
 
	find_if( e.second->owners.begin(),
 
		 e.second->owners.end(),
 
		 bind2nd( mem_fun_ref(&Neighbor::CellEquals), c->cell->Index()) );
 
      
 
      // - correct the record
 
      if (cpos->nb1 == e.first) {
 
	cpos->nb1 = new_node;
 
      } else 
 
	if (cpos->nb2 == e.first) {
 
	  cpos->nb2 = new_node;
 
	}
 
      
 
    
 
    } else break;
 
    c++; 
 
  }
 

	
 
  // Repair neighborhood lists in a second loop, to make sure all
 
  // `administration' is up to date
 
  while (c!=owners.end()) {
 
    c=adjacent_find(c,owners.end(),  neighbor_cell_eq);
 
    // repair neighborhood lists of cell and Wall lists
 
    //if (c->cell>=0) {
 
    if (!c->cell->BoundaryPolP()) {
 
      c->cell->ConstructNeighborList();
 
      //      debug_stream << "Repairing NeighborList of " << c->cell << endl;
 
    }
 
    c++;
 
  }
 
  //  debug_stream.flush();
 

	
 
}
 

	
 

	
 
/*
 
   Calculate circumcircle of triangle (x1,y1), (x2,y2), (x3,y3)
 
   The circumcircle centre is returned in (xc,yc) and the radius in r
 
   NOTE: A point on the edge is inside the circumcircle
 
*/
 
void Mesh::CircumCircle(double x1,double y1,double x2,double y2,double x3,double y3,
 
		 double *xc,double *yc,double *r)
 
{
 
  double m1,m2,mx1,mx2,my1,my2;
 
  double dx,dy,rsqr;
 

	
 
  /* Check for coincident points */
 
  /*if (abs(y1-y2) < TINY && abs(y2-y3) < TINY)
 
    return(false);*/
 

	
 
  if (abs(y2-y1) < TINY) {
 
    m2 = - (x3-x2) / (y3-y2);
 
    mx2 = (x2 + x3) / 2.0;
 
    my2 = (y2 + y3) / 2.0;
 
    *xc = (x2 + x1) / 2.0;
 
    *yc = m2 * (*xc - mx2) + my2;
 
  } else if (abs(y3-y2) < TINY) {
 
    m1 = - (x2-x1) / (y2-y1);
 
    mx1 = (x1 + x2) / 2.0;
 
    my1 = (y1 + y2) / 2.0;
 
    *xc = (x3 + x2) / 2.0;
 
    *yc = m1 * (*xc - mx1) + my1;
 
  } else {
 
    m1 = - (x2-x1) / (y2-y1);
 
    m2 = - (x3-x2) / (y3-y2);
 
    mx1 = (x1 + x2) / 2.0;
 
    mx2 = (x2 + x3) / 2.0;
 
    my1 = (y1 + y2) / 2.0;
 
    my2 = (y2 + y3) / 2.0;
 
    *xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
 
    *yc = m1 * (*xc - mx1) + my1;
 
  }
 

	
 
  dx = x2 - *xc;
 
  dy = y2 - *yc;
 
  rsqr = dx*dx + dy*dy;
 
  *r = sqrt(rsqr);
 

	
 
  return;
 
  // Suggested
 
  // return((drsqr <= rsqr + EPSILON) ? TRUE : FALSE);
 

	
 
}
 
  
 
//
 

	
 
// return the total amount of chemical "ch" in the leaf
 
double Mesh::SumChemical(int ch) {
 
  
 
  double sum=0.;
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 
  
 
    sum+=(*i)->chem[ch];
 
  }
 
  return sum;
 

	
 
}
 

	
 

	
 

	
 
void Mesh::CleanUpCellNodeLists(void) {
 
  
 
  typedef vector <vector<Cell *>::iterator> CellItVect;
 
  
 
  CellItVect cellstoberemoved;
 
  vector<int> cellind;
 
  
 
  // Start of by removing all stale walls.
 
  //DeleteLooseWalls();
 
  // collect all dead cells that need to be removed from the simulation
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 
    
 
    if ((*i)->DeadP()) {
 
      // collect the iterators
 
      cellstoberemoved.push_back(i);
 

	
 
      // collect the indices
 
      cellind.push_back((*i)->index);
 
    } else {
 
      // Remove pointers to dead Walls
 
      for (list<Wall *>::iterator w=(*i)->walls.begin();
 
	   w!=(*i)->walls.end();
 
	   w++) {
 
	if ((*w)->DeadP()) {
 
	  (*w)=0;
 
	}
 
      }
 
      (*i)->walls.remove(0);
 
    }
 
  }
 

	
 
  // Remove pointers to dead Walls from BoundaryPolygon
 
  for (list<Wall *>::iterator w=boundary_polygon->walls.begin();
 
       w!=boundary_polygon->walls.end();
 
       w++) {
 
    if ((*w)->DeadP()) {
 
      (*w)=0;
 
    }
 
  }
 
  boundary_polygon->walls.remove(0);
 
  
 

	
 
  // Renumber cells; this is most efficient if the list of dead cell indices is sorted
 
  sort(cellind.begin(),cellind.end());
 
  
 
  
 
  // Reindexing of Cells
 
  for (vector<int>::reverse_iterator j=cellind.rbegin();
 
       j!=cellind.rend();
 
       j++) {
 

	
 
    for (vector<Cell *>::reverse_iterator i=cells.rbegin();
 
	 i!=cells.rend();
 
	 i++) {
 
      
 
      if (*j < (*i)->index) (*i)->index--;
 
      
 
    }
 
    
 
  }
 

	
 
    
 
  // Actual deleting of Cells
 
  // We must delete in reverse order, otherwise the iterators become redefined
 
  for ( CellItVect::reverse_iterator i=cellstoberemoved.rbegin();
 
	i!=cellstoberemoved.rend();
 
	i++) {
 
    Cell::NCells()--;
 
    cells.erase(*i);
 
  }
 
    
 
  
 
  // same for nodes
 
  typedef vector <vector<Node *>::iterator> NodeItVect;
 
  
 
  NodeItVect nodestoberemoved;
 
  vector<int> nodeindlist;
 
 
 
  // collect iterators and indices of dead nodes
 
  for (vector<Node *>::iterator i=nodes.begin();
 
       i!=nodes.end();
 
       i++) {
 
    
 
    if ((*i)->DeadP()) {
 
      nodestoberemoved.push_back( i );
 
      nodeindlist.push_back((*i)->index);
 
      
 
    }
 
  }
 

	
 
  // sort the list of dead nodes for renumbering
 
  sort(nodeindlist.begin(),nodeindlist.end());
 
  
 

	
 
  // Reindicing of Nodes
 
  for (vector<int>::reverse_iterator j=nodeindlist.rbegin();
 
       j!=nodeindlist.rend();
 
       j++) {
 

	
 
    for (vector<Node *>::reverse_iterator i=nodes.rbegin();
 
	 i!=nodes.rend();
 
	 i++) {
 
      
 
      if (*j < (*i)->index) { 
 

	
 
	(*i)->index--;
 
      } 
 
      
 
    
 
    }
 
    
 
  }
 
  
 
  // Actual deleting of nodes
 
  // We must delete in reverse order, otherwise the iterators become redefined
 
  for ( NodeItVect::reverse_iterator i=nodestoberemoved.rbegin();
 
	i!=nodestoberemoved.rend();
 
	i++) {
 
    Node::nnodes--;
 
    nodes.erase(*i);
 
  }
 
  
 
  
 
  
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    if ((*w)->DeadP()) {
 
      Wall::nwalls--;
 
      delete *w;
 
      *w = 0;
 
    }
 
  }
 
  
 
  walls.remove( 0 );
 
  
 
  
 

	
 
  // Clean up all intercellular connections and redo everything
 
  for (vector<Node *>::iterator i=nodes.begin();
 
       i!=nodes.end();
 
       i++) {
 
    
 
    (*i)->owners.clear();
 
  }
 
  
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 

	
 
    (*i)->ConstructConnections();
 

	
 
  }
 

	
 
  boundary_polygon->ConstructConnections();
 
  
 
  /* for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    delete *w;    
 
  }
 
  
 
  walls.clear(); 
 
  cerr << "Cleared walls\n"; 
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 
    
 
    (*i)->ConstructWalls();
 
  }
 
  */
 
  
 
  // remake shuffled_nodes and shuffled cells
 
  shuffled_nodes.clear();
 
  shuffled_nodes = nodes;
 
  
 
  shuffled_cells.clear();
 
  shuffled_cells = cells;
 
 
 
}
 

	
 
void Mesh::CutAwayBelowLine( Vector startpoint, Vector endpoint) {
 
  
 
  // Kills all cells below the line startpoint -> endpoint
 
  
 
  Vector perp = (endpoint-startpoint).Perp2D().Normalised();
 
  
 
  
 
  cerr << "Before Apoptose\n";
 
  TestIllegalWalls();
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 
    
 
    // do some vector geometry to check whether the cell is below the cutting line
 
    Vector cellvec = ((*i)->Centroid()-startpoint);
 
    
 
    if ( InnerProduct(perp, cellvec) < 0 ) {
 
      // remove those cells
 
      (*i)->Apoptose();
 
    }
 
  }
 

	
 
  cerr << "Before CleanUpCellNodeLists\n";
 
  TestIllegalWalls();
 
  
 
  CleanUpCellNodeLists();
 

	
 
}
 

	
 
void Mesh::CutAwaySAM(void) {
 

	
 
  for (vector<Cell *>::iterator i=cells.begin();
 
       i!=cells.end();
 
       i++) {
 
    
 
    if( (*i)->Boundary() == Cell::SAM ) {
 

	
 
	(*i)->Apoptose();
 
    }
 
  }
 

	
 
  TestIllegalWalls();
 
  
 
  CleanUpCellNodeLists();
 

	
 

	
 
}
 
void Mesh::TestIllegalWalls(void) {
 

	
 
  for (list<Wall *>::iterator w = walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    if ((*w)->IllegalP() ) {
 
      cerr << "Wall " << **w << " is illegal.\n";
 
    }
 
  }
 

	
 
}
 

	
 

	
 

	
 
class node_owners_eq : public unary_function<Node, bool> {
 
  int no;
 
public:
 
  
 
  explicit node_owners_eq(int nn) { no=nn; }
 

	
 
  bool operator() (const Node &n) const {
 
    if (n.CellsSize()==1) 
 
      return true;
 
    else 
 
      return false;
 
  }
 
  
 
};
 

	
 

	
 
void Mesh::RepairBoundaryPolygon(void) {
 
  
 
  // After serious manipulations (e.g. after cutting part off the
 
  // leaf) repair the boundary polygon. It assumes the cut line has
 
  // already been marked "boundary" and the original boundary marks
 
  // were not removed. 
 
  //
 
  // So, this function just puts boundary nodes into the boundary
 
  // polygon in the right order; it cannot detect boundaries from
 
  // scratch.
 
  
 
  Node *boundary_node=0, *next_boundary_node=0, *internal_node;
 
  set<int> original_boundary_nodes, repaired_boundary_nodes;
 
  vector<int> difference; // set difference result
 

	
 
  // Step 0: print out current boundary polygon
 
#ifdef QDEBUG
 
  qDebug() << endl << "Original Boundary Polygon node indices: ";
 
  foreach (Node* node, boundary_polygon->nodes) {
 
    qDebug() << node->Index() << " " ;
 
  }    
 
  qDebug() << endl << endl;
 
#endif
 

	
 
  // Step 1a: Create a set containing the current boundary polygon nodes' Indices.
 
  foreach (Node* node, boundary_polygon->nodes) {
 
    original_boundary_nodes.insert(node->Index());
 
  }
 

	
 
  // Step 1b: remove all nodes from boundary polygon
 
  boundary_polygon->nodes.clear();
 

	
 
  // Step 2: Remove all references to the boundary polygon from the Mesh's current list of nodes
 
  foreach (Node* node, nodes) {
 
    node->Unmark(); // remove marks, we need them to determine if we have closed the circle
 
    list<Neighbor>::iterator boundary_ref_pos;
 
    if ((boundary_ref_pos = find_if (node->owners.begin(), node->owners.end(), 
 
				     bind2nd(mem_fun_ref(&Neighbor::CellEquals), -1))) != node->owners.end()) {
 
      // i.e. if one of the node's owners is the boundary polygon 
 
      node->owners.erase(boundary_ref_pos); // remove the reference
 
    }
 
  }
 
  
 
  // Step 3: Search for the first boundary node.  We reconstruct the
 
  // boundary polygon by moving along the boundary nodes until we've
 
  // encircled the polygon. Since manually adding nodes may have
 
  // turned nodes previously along the boundary into internal nodes,
 
  // we search through all the node until we find first boundary node
 
  // and proceed from there. If findNextBoundaryNode() returns a node
 
  // other than the one passed to it, the original node is the first
 
  // boundary node.
 
  foreach (Node* node, nodes) {
 
    if ((findNextBoundaryNode(node))->index != node->index){
 
      next_boundary_node = node;
 
      break;
 
    }
 
  }
 

	
 
  // We have a problem if we arrive here without having found a boundary node.
 
  if (!next_boundary_node) throw("Cannot find a boundary node!.");
 

	
 
  // Reconstruct the list of boundary polygon nodes.
 
  do {
 
    boundary_node = next_boundary_node;
 
    boundary_node->Mark();
 
    boundary_polygon->nodes.push_back(boundary_node);
 
    next_boundary_node = findNextBoundaryNode(boundary_node);
 
  } while ( !next_boundary_node->Marked() );
 

	
 

	
 
  // Create a set containing the reconstructed boundary polygon nodes' Indices.
 
  for (list<Node *>::iterator it = boundary_polygon->nodes.begin(); it!=boundary_polygon->nodes.end(); ++it) {
 
    repaired_boundary_nodes.insert((*it)->Index());
 
  }
 

	
 
  // Calculate the difference between the original and repaired sets of boundary nodes
 
  // yielding the set of nodes that are no longer part of the boundary polygon.
 
  set_difference(original_boundary_nodes.begin(), original_boundary_nodes.end(),
 
                 repaired_boundary_nodes.begin(), repaired_boundary_nodes.end(), back_inserter(difference));
 

	
 
  // Tell each node in the difference that it's no longer part of the boundary polygon
 
  vector<Node *>::iterator internal_node_it;
 
  foreach (int i, difference){
 
    internal_node_it = find_if (nodes.begin(), nodes.end(), bind2nd(mem_fun(&Node::IndexEquals), i));
 
    internal_node = *internal_node_it; // dereference the itterator to get to the node pointer
 
    if (!internal_node) throw("Found a null Node pointer.");
 
    internal_node->UnsetBoundary();
 
  }
 

	
 
  boundary_polygon->ConstructConnections();
 
  for (list<Wall *>::iterator w=boundary_polygon->walls.begin();
 
       w!=boundary_polygon->walls.end();
 
       w++) {
 
    if ((*w)->DeadP()) {
 
      (*w)=0;
 
    }
 
  }
 
  boundary_polygon->walls.remove(0);
 
  boundary_polygon->ConstructNeighborList();
 
  
 
#ifdef QDEBUG
 
  cerr << "Repaired Boundary Polygon node indices: ";
 
  foreach (Node* node, boundary_polygon->nodes){
 
    qDebug() << node->Index() << " " ;
 
  }
 
  qDebug() << endl ;
 

	
 
  #ifdef _undefined_
 
  qDebug() << "NODES:" << endl;
 
  foreach(Node* node, nodes) {
 
    qDebug() << *node;
 
  }
 
  qDebug() << endl;
 

	
 
  qDebug() << "WALLS:" << endl;
 
  foreach(Wall* wall, walls) {
 
    qDebug() << *wall;
 
  }
 
  qDebug() << endl;
 

	
 
  qDebug() << "CELLS:" << endl;
 
  foreach(Cell* cell, cells) {
 
    qDebug() << *cell;
 
  }
 
  qDebug() << endl;
 
  #endif
 
#endif
 

	
 
}
 

	
 

	
 
Node* Mesh::findNextBoundaryNode(Node* boundary_node) {
 
  bool found_next_boundary_node = false;
 
  Node *next_boundary_node;
 
  set<int> boundary_node_owners; // This is a list of the current boundary node's owners' Ids
 
  vector<int> neighborIds; // A list of the current boundary node's owners' 2nd neighbor Ids
 
  vector<set<int> *>  nodeOwners; // A vector of set pointers where each set contains the owner Ids of the nodes in the neighborIds list.
 
  vector<int> intersection; // set intersection result
 

	
 
  // The next boundary node is that which has only one owner in common with the current boundary node
 
  for (list<Neighbor>::iterator it=boundary_node->owners.begin(); it!=boundary_node->owners.end(); ++it) {
 
    if (it->cell->Index() != -1) boundary_node_owners.insert(it->cell->Index()); // Save each of the current boundary node's owners' Ids - except the boundary polygon 
 
    set<int> *owners = new set<int>; // create a set to hold a 2nd neighbor's owners' Ids
 
    nodeOwners.push_back(owners);
 
    neighborIds.push_back(it->nb2->Index());
 
    foreach(Neighbor neighbor, it->nb2->owners){
 
      if (neighbor.cell->Index() != -1) owners->insert(neighbor.cell->Index()); // Save second neighbors' owners' Ids - except the boundary polygon 
 
    }
 
  }
 
  vector<int>::iterator itt = neighborIds.begin();
 
  vector<set<int> *>::iterator it = nodeOwners.begin();
 

	
 
  #ifdef QDEBUG  
 
  qDebug() << "Boundary node: " <<  boundary_node->Index() << " is owned by the following cells: ";
 
  foreach (int i, boundary_node_owners){
 
    qDebug() << i << "  ";
 
  }
 
  qDebug() << endl;
 
  #endif
 

	
 
  for (; it < nodeOwners.end(); it++, itt++) {
 
    intersection.clear();
 
    set_intersection(boundary_node_owners.begin(), boundary_node_owners.end(), (*it)->begin(), (*it)->end(), back_inserter(intersection));
 

	
 
    #ifdef QDEBUG  
 
    qDebug() << "The intersection of the boundary node(" << boundary_node->Index() << ") owners and its 2nd neighbor(" <<  *itt << ") owners is: ";
 
    foreach (int i, intersection){
 
      qDebug() << i << "  ";
 
    }
 
    qDebug() << endl;
 
    #endif
 

	
 
    if (intersection.size() == 1){
 
      found_next_boundary_node = true;
 
      vector<Node *>::iterator next_boundary_node_it = find_if (nodes.begin(), nodes.end(), bind2nd(mem_fun(&Node::IndexEquals), *itt));
 
      next_boundary_node = *next_boundary_node_it; // defeference the itterator to get to the node pointer
 

	
 
      #ifdef QDEBUG  
 
      qDebug() << "The Current boundary node is: " << boundary_node->Index()
 
	       << ". The Next boundary node is: " << *itt << ((next_boundary_node->Marked()) ? " Marked" : " Unmarked") << endl << endl;
 
      #endif
 

	
 
      break;
 
    }
 
  }
 

	
 
  #ifdef QDEBUG  
 
  if (!found_next_boundary_node) {
 
    qDebug() << "OOPS! Didn't find the next boundrary node!" << endl;
 
  }
 
  #endif
 

	
 
  return next_boundary_node;
 
}
 

	
 

	
 
void Mesh::CleanUpWalls(void) {
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 

	
 
    if ((*w)->DeadP()) {
 
      delete *w;
 
      (*w)=0;      
 
    }
 
  }
 
  walls.remove(0);
 
}
 

	
 
void Mesh::Rotate(double angle, Vector center) {
 

	
 
  // Rotate the mesh over the angle "angle", relative to center point "center".
 

	
 
  Matrix rotmat;
 

	
 
  rotmat.Rot2D(angle);
 
  
 
  for (vector<Node *>::iterator n=nodes.begin();
 
       n!=nodes.end();
 
       n++) {
 

	
 
    (*n)->setPos ( rotmat * ( *(*n) - center ) + center );  
 
    
 
  }
 
}
 

	
 

	
 
void Mesh::PrintWallList( void ) {
 
  
 
   transform ( walls.begin(), walls.end(), ostream_iterator<Wall>(cerr, "\n"), deref_ptr<Wall> );
 

	
 
}
 

	
 
#include <QString>
 
//#include "forwardeuler.h"
 
#include "rungekutta.h"
 

	
 
class SolveMesh : public RungeKutta {
 
    
 
private:
 
  SolveMesh(void);
 
    
 
public:
 
	SolveMesh(Mesh *m_) {
 
    
 
		m = m_;
 
				
 
		kmax=0;
 
		kount=0;
 
		xp=0; yp=0; dxsav=0;
 
		
 
    
 
	}
 
  
 
protected:
 
  virtual void derivs(double x, double *y, double *dydx) {
 
      
 
    // set mesh with new values given by ODESolver
 
    // (we must do this, because only mesh knows the connections
 
    // between the variables)
 
    
 
    m->setValues(x,y);
 
    m->Derivatives(dydx);
 
    
 
    /*static int c=0;
 
       QString fname("derivs%1.dat");
 
       
 
       ofstream of(fname.arg(++c).ascii());
 
       
 
       for (int i=0;i<m->NEqs();i++) {
 
       of << x << " " << dxdy[i] << endl;
 
       }
 
       of.close();
 
    */
 
    
 
    //cerr << "Calculated derivatives at " << x << "\n";    
 
  }
 
  
 
private:
 
  Mesh *m;
 
  int kmax,kount;
 
  double *xp,**yp,dxsav;
 
  bool monitor_window;
 
};
 
  
 

	
 

	
 
void Mesh::ReactDiffuse(double delta_t) {
 
  
 
  // Set Lengths of Walls
 
  for_each ( walls.begin(), walls.end(), 
 
	     mem_fun( &Wall::SetLength ) );
 
  
 
  static SolveMesh *solver = new SolveMesh(this);
 
  
 
  int nok, nbad, nvar;
 
  double *ystart = getValues(&nvar);
 
  
 
  solver->odeint(ystart, nvar, getTime(), getTime() + delta_t, 
 
		 par.ode_accuracy, par.dt, 1e-10, &nok, &nbad);
 
  
 
  setTime(getTime()+delta_t);
 
  setValues(getTime(),ystart);
 
  
 
}
 

	
 

	
 
Vector Mesh::FirstConcMoment(int chem) {
 
  
 
  Vector moment;
 
  for (vector<Cell *>::const_iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    
 
    moment += (*c)->Chemical(chem) * (*c)->Centroid();
 
    
 
  }
 

	
 
  return moment / (double)cells.size();
 
}
 

	
 
/*! This member function deletes all walls connected to two dead cells from the mesh.
 
  It should be called before the Cells are actually removed.
 
  If the cell is connect to one dead cell only, that reference is substituted for a reference 
 
  to the boundary polygon.
 
*/
 
void Mesh::DeleteLooseWalls(void) {
 

	
 
  list<Wall *>::iterator w=walls.begin();
 
  
 
  while (w!=walls.end()) {
 
    
 
    // if both cells of the wall are dead, remove the wall
 
    if ((*w)->C1()->DeadP() || (*w)->C2()->DeadP()) {
 
      if ((*w)->C1()->DeadP() && (*w)->C2()->DeadP()) {
 
	delete *w;
 
	w=walls.erase(w);
 
      } else {
 
	if ((*w)->C1()->DeadP())
 
	  (*w)->c1 = boundary_polygon;
 
	else
 
	  (*w)->c2 = boundary_polygon;
 
	w++;
 
      }
 
    } else {
 
      w++;
 
    }
 
    
 
  }
 
  
 
}
 

	
 
/*void Mesh::FitLeafToCanvas(double width, double height) {
 

	
 
  Vector bbll,bbur;
 
  BoundingBox(bbll,bbur);
 
  
 
  double scale_x = width/(bbur.x-bbll.x);
 
  double scale_y = height/(bbur.y-bbll.y);
 
  
 
  double factor = scale_x<scale_y ? scale_x:scale_y;
 
  
 
  Cell::SetMagnification(factor); // smallest of scale_x and scale_y
 
  
 
  double offset_x = (width/Cell::Magnification()-(bbur.x-bbll.x))/2.;  
 
  double offset_y = (height/Cell::Magnification()-(bbur.y-bbll.y))/2.;
 
  
 
  Cell::setOffset(offset_x, offset_y);
 
  
 
  }*/
 

	
 

	
 
void Mesh::CleanChemicals(const vector<double> &clean_chem, const vector<double> &clean_transporters) {
 
  
 
  if (clean_chem.size()!=(unsigned)Cell::NChem() || clean_transporters.size()!=(unsigned)Cell::NChem()) {
 
    throw "Run time error in Mesh::CleanChemicals: size of clean_chem and clean_transporters should be equal to Cell::NChem()";
 
  }
 
  for (vector<Cell *>::iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    
 
    for (int i=0;i<Cell::NChem();i++) {
 
      (*c)->SetChemical(i,clean_chem[i]);
 
    }
 
    (*c)->SetNewChemToChem();
 

	
 
  }
 

	
 
  // clean transporters
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    
 
    for (int i=0;i<Cell::NChem();i++) {
 
      (*w)->setTransporters1(i,clean_transporters[i]); (*w)->setNewTransporters1(i,clean_transporters[i]);
 
      (*w)->setTransporters2(i,clean_transporters[i]); (*w)->setNewTransporters2(i,clean_transporters[i]);
 
    }
 
  }
 
  
 
}
 

	
 
void Mesh::RandomizeChemicals(const vector<double> &max_chem, const vector<double> &max_transporters) {
 
  
 
  if (max_chem.size()!=(unsigned)Cell::NChem() || max_transporters.size()!=(unsigned)Cell::NChem()) {
 
    throw "Run time error in Mesh::CleanChemicals: size of max_chem and max_transporters should be equal to Cell::NChem()";
 
  }
 
  
 
  for (vector<Cell *>::iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    
 
    for (int i=0;i<Cell::NChem();i++) {
 
      (*c)->SetChemical(i,max_chem[i]*RANDOM());
 
    }
 
    (*c)->SetNewChemToChem();
 

	
 
  }
 

	
 
  // randomize transporters
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    
 
    for (int i=0;i<Cell::NChem();i++) {
 
      (*w)->setTransporters1(i,max_transporters[i] * RANDOM()); (*w)->setNewTransporters1(i, (*w)->Transporters1(i) );
 
      (*w)->setTransporters2(i,max_transporters[i] * RANDOM()); (*w)->setNewTransporters2(i, (*w)->Transporters1(i) );
 
    }
 
  }
 
  
 
}
 

	
 
//!\brief Calculates a vector with derivatives of all variables, which
 
// we can pass to an ODESolver. 
 
void Mesh::Derivatives(double *derivs) {
 
  
 
  int nwalls = walls.size();
 
  int ncells = cells.size();
 
  int nchems = Cell::NChem();
 
  
 
  // two eqs per chemical for each walls, and one eq per chemical for each cell
 
  // This is for generality. For a specific model you may optimize
 
  // this by removing superfluous (empty) equations.
 
  int neqs = 2 * nwalls * nchems + ncells * nchems;
 
  
 
  //static double *derivs = 0; 
 
  // derivs is allocated by RungeKutta class.
 

	
 
  for (int i=0;i<neqs;i++) { derivs[i]=0.;}
 
  
 
  // Layout of derivatives: cells [ chem1 ... chem n]  walls [ [ w1(chem 1) ... w1(chem n) ] [ w2(chem 1) ... w2(chem n) ] ]
 

	
 
  int i=0;
 

	
 
  for (vector<Cell *>::iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    //(*cr)(*c, &(derivs[i]));
 
	  plugin->CellDynamics(*c, &(derivs[i]));
 
	  i+=nchems;
 
  }
 
	
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
   // (*wr)(*w, &(derivs[i]), &(derivs[i+nchems]));
 
	  plugin->WallDynamics(*w,  &(derivs[i]), &(derivs[i+nchems]));
 
    // Transport function adds to derivatives of cell chemicals
 
	  plugin->CelltoCellTransport(*w, &(derivs[(*w)->c1->Index() * nchems]),
 
								  &(derivs[(*w)->c2->Index() * nchems]));
 
	  double *dchem_c1 = &(derivs[(*w)->c1->Index() * nchems]);
 
	  double *dchem_c2 = &(derivs[(*w)->c2->Index() * nchems]);
 
	  //plugin->CelltoCellTransport(*w, &(derivs[(*w)->c1->Index() * nchems]),
 
							//	  &(derivs[(*w)->c2->Index() * nchems]));
 
	  // quick fix: dummy values to prevent end user from writing into outer space and causing a crash :-)
 
	  // start here if you want to implement chemical input/output into environment over boundaries
 
	  double dummy1, dummy2;
 
	  if ((*w)->c1->Index()<0) { // tests if c1 is the boundary pol
 
		  dchem_c1 = &dummy1;
 
	  }
 
	  if ((*w)->c2->Index()<0) {
 
		  dchem_c2 = &dummy2;
 
	  }
 
	  plugin->CelltoCellTransport(*w, dchem_c1, dchem_c2); 
 
	  
 
	  //(*tf)(*w, &(derivs[(*w)->c1->Index() * nchems]),
 
      //&(derivs[(*w)->c2->Index() * nchems] ) );
 
    i+=2*nchems;
 
  }
 
  
 
  
 
}
 

	
 
void Mesh::setValues(double x, double *y) {
 

	
 
  //int nwalls = walls.size();
 
  //int ncells = cells.size();
 
  int nchems = Cell::NChem();
 
  
 
  // two eqs per chemical for each walls, and one eq per chemical for each cell
 
  // This is for generality. For a specific model you may optimize
 
  // this by removing superfluous (empty) equations.
 
  //int neqs = 2 * nwalls * nchems + ncells * nchems;
 
  
 
  // Layout of derivatives: cells [ chem1 ... chem n]  walls [ [ w1(chem 1) ... w1(chem n) ] [ w2(chem 1) ... w2(chem n) ] ]
 

	
 
  int i=0;
 
  static int emit_count=0;
 
  const int stride = 100;
 
  for (vector<Cell *>::iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    for (int ch=0;ch<nchems;ch++) {
 
      (*c)->SetChemical(ch, y[i+ch]);
 
    }
 
    if ( !(emit_count%stride)) {
 
      (*c)->EmitValues(x);
 
    }
 
    i+=nchems;
 
  }
 
  
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    
 
    for (int ch=0;ch<nchems;ch++) {
 
      (*w)->setTransporters1(ch,y[i+ch]);
 
    }
 
    i+=nchems;
 
    
 
    for (int ch=0;ch<nchems;ch++) {
 
      (*w)->setTransporters2(ch,y[i+ch]);
 
    }
 
    i+=nchems;
 

	
 
  }
 

	
 
  emit_count++;
 
}
 

	
 
double *Mesh::getValues(int *neqs) {
 
  
 
  int nwalls = walls.size();
 
  int ncells = cells.size();
 
  int nchems = Cell::NChem();
 
  
 
  // two eqs per chemical for each wall, and one eq per chemical for each cell
 
  // This is for generality. For a specific model you may optimize
 
  // this by removing superfluous (empty) equations.
 
  (*neqs) = 2 * nwalls * nchems + ncells * nchems;
 
  
 
  // Layout of derivatives: cells [ chem1 ... chem n]  walls [ [ w1(chem 1) ... w1(chem n) ] [ w2(chem 1) ... w2(chem n) ] ]
 

	
 
  static double *values = 0;
 
  if (values!=0) { delete[] values; }
 
  
 
  values = new double[*neqs];
 
  
 
  int i=0;
 
  for (vector<Cell *>::iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    for (int ch=0;ch<nchems;ch++) {
 
      values[i+ch]=(*c)->Chemical(ch);
 
    }
 
    i+=nchems;
 
  }
 
  
 
  for (list<Wall *>::iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    
 
    for (int ch=0;ch<nchems;ch++) {
 
      values[i+ch]=(*w)->Transporters1(ch);
 
    }
 
    i+=nchems;
 
    
 
    for (int ch=0;ch<nchems;ch++) {
 
      values[i+ch]=(*w)->Transporters2(ch);
 
    }
 
    i+=nchems;
 

	
 
  }
 

	
 
  return values;
 
}
 

	
 
void Mesh::DrawNodes(QGraphicsScene *c) const {
 
  
 
  for (vector<Node *>::const_iterator n=nodes.begin();
 
       n!=nodes.end();
 
       n++) {
 
    
 
    Node *i=*n;
 
    
 
    NodeItem *item = new NodeItem ( &(*i), c );
 
    item->setColor();
 
    
 
    item->setZValue(5);
 
    item->show();
 
    item ->setPos(((Cell::offset[0]+i->x)*Cell::factor),
 
		  ((Cell::offset[1]+i->y)*Cell::factor) );
 
  }
 

	
 
}
 

	
 
/*! Returns the sum of protein "ch" of a cycling protein in cells and walls */
 
double Mesh::CalcProtCellsWalls(int ch) const {
 

	
 

	
 
  double sum_prot=0.;
 

	
 
  // At membranes
 
  for (list<Wall *>::const_iterator w=walls.begin();
 
       w!=walls.end();
 
       w++) {
 
    sum_prot += (*w)->Transporters1(ch);
 
    sum_prot += (*w)->Transporters2(ch);
 
  }
 

	
 
  // At cells
 
  for (vector<Cell *>::const_iterator c=cells.begin();
 
       c!=cells.end();
 
       c++) {
 
    
 
    sum_prot += (*c)->Chemical(ch);
 
  }
 
  
 
  return sum_prot;
 

	
 
}
 

	
 
void Mesh::SettoInitVals(void) {
 
  
 
  vector<double> clean_chem(Cell::NChem());
 
  vector<double> clean_transporters(Cell::NChem());
 
  
 
  for (int i=0;i<Cell::NChem();i++) {
 
    clean_transporters[i]=0.;
 
    clean_chem[i]=par.initval[i];
 
  }
 

	
 
  // Amount of PIN1
 
  //clean_chem[1] = 0.;
 
  
 
  CleanChemicals(clean_chem, clean_transporters);
 

	
 
}
 

	
 
string Mesh::getTimeHours(void) const {
 
	int hours = (int)(time / 3600);
 
	int mins = (int)((time - hours * 3600)/60);
 
	int secs = (int)((time - hours * 3600 - mins * 60));
 
	ostringstream tstr;
 
	tstr << hours << " h " << mins << " m " << secs << " s";
 
	return tstr.str();
 
}
 

	
 
QVector<qreal> Mesh::VertexAngles(void) {
 
	QVector<qreal> angles;
 
	for (vector<Node *>::const_iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		if ((*n)->Value()>2 && !(*n)->BoundaryP() ) {
 
			angles+=(*n)->NeighbourAngles();
 
		}
 
	}
 
	return angles;
 
}
 

	
 
QVector< QPair<qreal,int> > Mesh::VertexAnglesValues(void) {
 

	
 
	QVector< QPair<qreal,int> > anglesvalues;
 
	for (vector<Node *>::const_iterator n=nodes.begin();
 
		 n!=nodes.end();
 
		 n++) {
 
		if ((*n)->Value()>2 && !(*n)->BoundaryP() ) {
 
			
 
			QVector<qreal> angles = (*n)->NeighbourAngles();
 
			int value_vertex = angles.size();
 
			for (QVector<qreal>::ConstIterator i=angles.begin();
 
				 i!=angles.end();
 
				 i++) {
 
				
 
				anglesvalues += QPair< qreal, int > (*i, value_vertex);
 
			}
 
		}
 
	}
 
	return anglesvalues;
 
}
 

	
 
void Mesh::Clean(void) {
 
        #ifdef QDEBUG
 
        qDebug() << "Freeing nodes" << endl;
 
	#endif
 
	for (vector<Node *>::iterator i=nodes.begin();
 
		 i!=nodes.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	nodes.clear();
 
	Node::nnodes=0;
 
	
 
        #ifdef QDEBUG
 
        qDebug() << "Freeing node sets" << endl;
 
        #endif
 
	for (vector<NodeSet *>::iterator i=node_sets.begin();
 
		 i!=node_sets.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	node_sets.clear();
 

	
 

	
 
        #ifdef QDEBUG
 
        qDebug() << "Freeing cells" << endl;
 
        #endif	
 
	//CellsStaticDatamembers *old_static_data_mem = Cell::GetStaticDataMemberPointer();
 
	for (vector<Cell *>::iterator i=cells.begin();
 
		 i!=cells.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	//Cell::static_data_members = old_static_data_mem;
 
	
 
	cells.clear();
 
	Cell::NCells()=0;
 
	
 
	delete boundary_polygon; // (already deleted during cleaning of cells?)
 

	
 
        #ifdef QDEBUG
 
        qDebug() << "Freeing walls" << endl;
 
        #endif
 
	for (list<Wall *>::iterator i=walls.begin();
 
		 i!=walls.end();
 
		 i++) {
 
		delete *i;
 
	}
 
	walls.clear();
 
	Wall::nwalls=0;
 
	
 
	node_insertion_queue.clear();
 
	shuffled_nodes.clear();
 
	shuffled_cells.clear();
 
	time = 0.0;
 
}
 

	
 
void Mesh::StandardInit(void) {
 

	
 
	boundary_polygon = new BoundaryPolygon();
 
	Cell &circle=CircularCell(0,0,10,10);
 
	
 
	circle.SetTargetArea(circle.CalcArea());
 
	circle.SetTargetLength(par.target_length);
 
	circle.SetLambdaLength(par.lambda_celllength);
 
	SetBaseArea();
 
	// clean up chemicals 
 
	for (int c=0; c<Cell::NChem(); c++) {
 
		circle.SetChemical(c, 0.);
 
	}
 
}
 

	
 

	
src/mesh.h
Show inline comments
 
/*
 
 *
 
 *  $Id$
 
 *
 
 *  This file is part of the Virtual Leaf.
 
 *
 
 *  The Virtual Leaf is free software: you can redistribute it and/or modify
 
 *  it under the terms of the GNU General Public License as published by
 
 *  the Free Software Foundation, either version 3 of the License, or
 
 *  (at your option) any later version.
 
 *
 
 *  The Virtual Leaf is distributed in the hope that it will be useful,
 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
 *  GNU General Public License for more details.
 
 *
 
 *  You should have received a copy of the GNU General Public License
 
 *  along with the Virtual Leaf.  If not, see <http://www.gnu.org/licenses/>.
 
 *
 
 *  Copyright 2010 Roeland Merks.
 
 *
 
 */
 

	
 

	
 
// Cell derives from Vector, where Vector is simply used as a Vertex
 

	
 
#ifndef _MESH_H_
 
#define _MESH_H_
 

	
 
#include <vector>
 
#include <algorithm>
 
#include <queue>
 
#include <iterator>
 
#include <functional>
 
#ifdef QTGRAPHICS
 
#include <QGraphicsScene>
 
#endif
 
#include "cell.h"
 
#include "node.h"
 
#include "simplugin.h"
 
#include <QVector>
 
#include <QPair>
 

	
 
using namespace std;
 
// new queue which rejects duplicate elements
 
template<class T, class C = deque<T> > class unique_queue : public queue<T,C> {
 
	
 
public:
 
	typedef typename C::value_type value_type;
 
	// reimplements push: reject element if it exists already
 
	void push(const value_type &x) {
 
		if (find (queue<T,C>::c.begin(),queue<T,C>::c.end(),x)==queue<T,C>::c.end()) {
 
			queue<T,C>::c.push_back(x);
 
		}
 
	}
 
	void clear(void) {
 
		queue<T,C>::c.clear();
 
	}
 
};
 

	
 
//template<class P> P& deref_ptr<P>( P *obj) { return *obj; }
 
template<class P> P& deref_ptr ( P *obj) { return *obj; }
 

	
 

	
 
class Mesh {
 
	
 
	friend class Cell;
 
	friend class Node;
 
	friend class FigureEditor;
 
	
 
public: 
 
	Mesh(void) {
 
		// Make sure the reserved value is large enough if a cell is added
 
		// in "Divide" when the capacity is insufficient, "cells" might be
 
		// relocated including the current Cell (i.e. the value of *this)
 
		// calling "Mesh::IncreaseCapacityIfNecessary" (from another
 
		// object than Cell, e.g. Mesh) before entering Divide will solve
 
		// this issue (solved now).
 
		cells.reserve(2);
 
		nodes.reserve(500);
 
		
 
		//boundary_polygon = new BoundaryPolygon();
 
		
 
		time = 0.;
 
		plugin = 0;
 
	};
 
	~Mesh(void) {
 
		delete boundary_polygon;
 
		/* if (plugin)
 
			delete plugin;*/
 
	};
 
	
 
	void Clean(void);
 
	//void Plane(int xwidth, int ywidth, int nx, int ny, bool randomP=false);
 
	Cell &EllipticCell(double xc, double yc, double ra, double rb, int nnodes=10, double rotation=0);
 
	Cell &CircularCell(double xc, double yc, double r, int nnodes=10) {
 
		return EllipticCell(xc, yc, r, r, nnodes, 0);
 
	}
 
	Cell &LeafPrimordium(int n, double pet_length);
 
	Cell &LeafPrimordium2(int n);
 
	Cell *RectangularCell(const Vector ll, const Vector ur, double rotation = 0);
 
	void CellFiles(const Vector ll, const Vector ur);
 
	
 
	/*  void GMVoutput(ostream &os, 
 
	 const char *codename=0, const char *codever=0,
 
	 const char *comments=0);*/
 
	//void RandPoints(int npoints);
 
	
 
	inline Cell &getCell(int i) {
 
		if ((unsigned)i<cells.size())
 
			return *cells[i];
 
		else {
 
			cerr << i << endl;
 
			cerr << "size is " << cells.size() << endl;
 
			abort();
 
			//	throw("Index out of range in Mesh::getCell");
 
		}
 
	}
 
	
 
	inline Node &getNode(int i) {
 
		//if (i >= nodes.size() || i < 0) {
 
		//  cerr << "Mesh::getNode: Warning. Index " << i << " out of range.\n";
 
		// }
 
		return *nodes[i];    
 
	}
 
	
 
	//double Diffusion(void);
 
	inline int size(void) {
 
		return cells.size();
 
	}
 
	inline int nnodes(void) {
 
		return nodes.size();
 
	}
 
	//void SortNBLists(void);
 
	
 
	/*template<class Op> void LoopCells(Op f) {
 
	 for (vector<Cell>::iterator i=cells.begin();
 
	 i!=cells.end();
 
	 i++) {
 
	 f(*i); 
 
	 }
 
	 }*/
 
	
 
	/*! \brief Calls function f for all Cells f.
 
	 
 
	 Using this template requires some fiddling with function adaptors bind2nd and mem_fun_ref.
 
	 
 
	 Example usage for calling a member function on each cell:
 
	 
 
	 mesh.LoopCells( bind2nd (mem_fun_ref( &Cell::DrawDiffEdges), &canvas ) );
 
	 
 
	 This calls Cell's member function DrawDiffEdges, taking one
 
	 argument canvas, on all Cell objects in the current Mesh.
 
	 
 
	 */
 
	template<class Op> void LoopCells(Op f) {
 
		for (vector <Cell *>::iterator i=cells.begin();
 
			 i!=cells.end();
 
			 i++) {
 
			f(**i);
 
		}
 
		//for_each(cells.begin(),cells.end(),f);
 
	}
 
	
 
	template<class Op> void LoopWalls(Op f) {
 
		for (list <Wall *>::iterator i=walls.begin();
 
			 i!=walls.end();
 
			 i++) {
 
			f(**i);
 
		}
 
	}
 
	
 
	// if the amount of cells might increase, during looping, use this template
 
	template<class Op> void LoopCurrentCells(Op f) {
 
		vector<Cell *> current_cells = cells;
 
		for (vector <Cell *>::iterator i=current_cells.begin();
 
			 i!=current_cells.end();
 
			 i++) {
 
			f(**i);
 
			
 
		}
 
		//for_each(cells.begin(),cells.end(),f);
 
	}
 
	
 
	template<class Op> void LoopNodes(Op f) {
 
		for (vector<Node *>::iterator i=nodes.begin();
 
			 i!=nodes.end();
 
			 i++) {
 
			f(**i); 
 
		}
 
	}
 
	
 
	template<class Op> void RandomlyLoopNodes(Op f) {
 
		
 
		MyUrand r(shuffled_nodes.size());
 
		random_shuffle(shuffled_nodes.begin(),shuffled_nodes.end(),r);
 
		
 
		for (vector<Node *>::const_iterator i=shuffled_nodes.begin();
 
			 i!=shuffled_nodes.end();
 
			 i++) {
 
			f(*shuffled_nodes[*i]);
 
		}
 
		
 
	}
 
	
 
	template<class Op> void RandomlyLoopCells(Op f) {
 
		
 
		MyUrand r(shuffled_cells.size());
 
		random_shuffle(shuffled_cells.begin(),shuffled_cells.end(),r);
 
		
 
		for (vector<Cell *>::const_iterator i=shuffled_cells.begin();
 
			 i!=shuffled_cells.end();
 
			 i++) {
 
			f(*shuffled_cells[*i]);
 
		}
 
		
 
		
 
	}
 
	
 
	template<class Op1, class Op2> void LoopCells(Op1 f, Op2 &g) {
 
		for (vector<Cell *>::iterator i=cells.begin();
 
			 i!=cells.end();
 
			 i++) {
 
			f(**i,g); 
 
		}
 
	}
 
	
 
	template<class Op1, class Op2, class Op3> void LoopCells(Op1 f, Op2 &g, Op3 &h) {
 
		for (vector<Cell *>::iterator i=cells.begin();
 
			 i!=cells.end();
 
			 i++) {
 
			f(**i,g,h); 
 
		}
 
	}
 
	
 
	void DoCellHouseKeeping(void) {
 
		vector<Cell *> current_cells = cells;
 
		for (vector<Cell *>::iterator i = current_cells.begin();
 
			 i != current_cells.end();
 
			 i ++) {
 
			plugin->CellHouseKeeping(**i);
 
			
 
			// Call functions of Cell that cannot be called from CellBase, including Division
 
			if ((*i)->flag_for_divide) {
 
				if ((*i)->division_axis) {
 
					(*i)->DivideOverAxis(*(*i)->division_axis);
 
					delete (*i)->division_axis;
 
					(*i)->division_axis = 0;
 
				} else {
 
				(*i)->Divide();
 
				}
 
				(*i)->flag_for_divide=false;
 
			}
 
		}
 
	}
 
/*	template<class Op1, class Cont> void ExtractFromCells(Op1 f, Cont res) {
 
		for (vector<Cell>::iterator i=cells.begin();
 
			 i!=cells.end();
 
			 i++) {
 
			*(res++) = ( f(*i) );
 
		}
 
	}*/
 
	
 
	// Apply "f" to cell i
 
	// i.e. this is an adapter which allows you to call a function
 
	// operating on Cell on its numeric index index
 
	template<class Op> void cell_index_adapter(Op f,int i) {
 
		f(cells[i]);
 
	}
 
	
 
	double DisplaceNodes(void);
 
	
 
	void BoundingBox(Vector &LowerLeft, Vector &UpperRight);
 
	int NEqs(void) {     int nwalls = walls.size();
 
		int ncells =cells.size();
 
		int nchems = Cell::NChem();
 
		
 
		// two eqs per chemical for each walls, and one eq per chemical for each cell
 
		// This is for generality. For a specific model you may optimize
 
		// this by removing superfluous (empty) equations.
 
		int neqs = 2 * nwalls * nchems + ncells * nchems;
 
		
 
		return neqs;
 
	}
 
	void IncreaseCellCapacityIfNecessary(void) {
 
		
 
		return;
 
		// cerr << "Entering Mesh::IncreaseCellCapacityIfNecessary \n";
 
		// make sure we always have enough space 
 
		// to have each cell divide at least once
 
		//
 
		// Note that we must do this, because Cell::Divide pushes a new Cell
 
		// onto Mesh::cells. As a result, Mesh::cells might be relocated 
 
		// if we are _within_ a Cell object: i.e. pointer "this" will be changed!!
 
		// 
 
		// An alternative solution could be to make "Mesh::cells" a list,
 
		// but this won't work because we need random access for 
 
		// the Monte Carlo algorithm.
 
		
 
		if (2*cells.size()>cells.capacity()) {
 
			cerr << "Increasing capacity to "  << 2*cells.capacity() << endl;
 
			cerr << "Current capacity is " << cells.capacity() << endl;
 
			cells.reserve(cells.capacity()*2);
 
		}
 
	}
 
	
 
	void ReserveMoreCells(int n) {
 
		if (nodes.size()+n>nodes.capacity()) {
 
			nodes.reserve(size()+n);
 
		}
 
	}
 
	double Area(void);
 
	double MeanArea(void) {
 
		double sum=0.;
 
		for (vector<Cell *>::const_iterator i=cells.begin();
 
			 i!=cells.end();
 
			 i++) {
 
			sum+=(*i)->Area();
 
		}
 
		return sum/(double)NCells();
 
	}
 
	
 
	void SetBaseArea(void);
 
	int NCells(void) const {
 
		return cells.size();
 
	}
 
	inline int NNodes(void) const {
 
		return nodes.size();
 
	}
 
	void PrintQueue(ostream &os) {
 
		while (!node_insertion_queue.empty()) {
 
			os << node_insertion_queue.front() << endl;
 
			node_insertion_queue.pop();
 
		}
 
		//copy (node_insertion_queue.begin(),node_insertion_queue.end(),ostream_iterator<Edge>(cerr, " "));
 
	}
 
	
 
	void InsertNodes(void) {
 
		// insert the nodes in the insertion queue
 
		while (!node_insertion_queue.empty()) {
 
			
 
			//cerr << node_insertion_queue.front() << endl;
 
			InsertNode(node_insertion_queue.front());
 
			node_insertion_queue.pop();
 
		}
 
		
 
	}
 
	
 
	void Clear(); 
 
	
 
	//  template<class ReactFunction> ReactDiffuse(const double D, ReactFunction& react) {
 
	void ReactDiffuse( double delta_t = 1 );
 
	//void Diffuse(const double D);
 
	double SumChemical(int ch);
 
	void SetChemical(int ch, double value) {
 
		for (vector<Cell *>::iterator c=cells.begin();
 
			 c!=cells.end();
 
			 c++) {
 
			(*c)->chem[ch]=value;
 
		}
 
	}
 
	
 
	// used for interacing with ODE-solvers (e.g. NRCRungeKutta)
 
	void setValues(double x, double *y);
 
	double *getValues(int *neqs);
 
	void Derivatives(double *derivs);
 
#ifdef QTGRAPHICS
 
	inline void DrawBoundary(QGraphicsScene *c) {
 
		boundary_polygon->Draw(c);
 
	}
 
	void DrawNodes(QGraphicsScene *c) const;
 
	
 
#endif
 
	double max_chem;
 
	
 
	void XMLSave(const char *docname, xmlNode *settings=0) const;
 
	void XMLRead(const char *docname, xmlNode **settings=0, bool geometry = true, bool pars = true, bool simtime = true);
 
	void XMLReadPars(const xmlNode * root_node);
 
	void XMLReadGeometry(const xmlNode *root_node);
 
	void XMLReadSimtime(const xmlNode *root_node);
 
	void XMLReadNodes(xmlNode *cur);
 
	void XMLReadCells(xmlNode *cur);
 
	void XMLParseTree(const xmlNode * root_node);
 
	void XMLReadWalls(xmlNode *cur, vector<Wall *> *tmp_cells);
 
	void XMLReadWallsToCells(xmlNode *root, vector<Wall *> *tmp_walls);
 
	void XMLReadNodeSets(xmlNode *root);
 
	void XMLReadNodeSetsToNodes(xmlNode *root);
 
	void PerturbChem(int chemnum, double range);
 
	void CleanUpCellNodeLists(void);
 
	void CleanUpWalls(void);
 
	void CutAwayBelowLine( Vector startpoint, Vector endpoint );
 
	void CutAwaySAM(void);
 
	void RepairBoundaryPolygon(void);
 
	void Rotate(double angle, Vector center);
 
	void PrintWallList( void );
 
	void TestIllegalWalls(void);
 
	Vector FirstConcMoment(int chem);
 
	inline Vector Centroid(void) {
 
		return boundary_polygon->Centroid();
 
	}
 
	
 
	inline Vector Offset(void) {
 
		return boundary_polygon->Offset();
 
	}
 
	
 
	inline double Factor(void) {
 
		return boundary_polygon->Factor();
 
	}
 
	
 
	void DeleteLooseWalls(void);
 
	void FitLeafToCanvas(double width, double height);
 
	void AddNodeSet(NodeSet *node_set) {
 
		node_sets.push_back(node_set);
 
	}
 
	
 
	void CleanChemicals(const vector<double> &clean_chem, const vector<double> &clean_transporters);
 
	void RandomizeChemicals(const vector<double> &max_chem, const vector<double> &max_transporters);
 
	inline double getTime(void) const { return time; }
 
	string getTimeHours(void) const; 
 
	inline void setTime(double t) { time = t; }
 
	double CalcProtCellsWalls(int ch) const;  
 
	void SettoInitVals(void);
 
	QVector<qreal> VertexAngles(void);
 
	QVector< QPair<qreal,int> > VertexAnglesValues(void);
 
	void SetSimPlugin(SimPluginInterface *new_plugin) {
 
		/* if (plugin) 
 
			delete plugin;*/
 
		plugin=new_plugin;
 
	}
 
	QString ModelID(void) { return plugin?plugin->ModelID():QString("undefined"); }
 
	void StandardInit(void);	
 

	
 
	Node* findNextBoundaryNode(Node*);
 

	
 
private:
 
	
 
	// Data members
 
	vector<Cell *> cells;
 
	vector<Node *> nodes;
 
	list<Wall *> walls; // we need to erase elements from this container frequently, hence a list.
 
public:
 
	vector<NodeSet *> node_sets;
 
private:
 
	vector<Node *> shuffled_nodes;
 
	vector<Cell *> shuffled_cells;
 
	unique_queue<Edge> node_insertion_queue;
 
	BoundaryPolygon *boundary_polygon;
 
	double time;
 
	SimPluginInterface *plugin;
 
	
 
	// Private member functions
 
	void AddNodeToCell(Cell *c, Node *n, Node *nb1 , Node *nb2);
 
	void AddNodeToCellAtIndex(Cell *c, Node *n, Node *nb1 , Node *nb2, list<Node *>::iterator ins_pos);
 
	void InsertNode(Edge &e);
 
	inline Node *AddNode(Node *n) {
 
		nodes.push_back(n);
 
		shuffled_nodes.push_back(n);
 
		n->m=this;
 
		return n;
 
	}
 
	
 
	inline Cell *AddCell(Cell *c) {
 
		cells.push_back(c);
 
		shuffled_cells.push_back(c);
 
		//cerr << "Shuffled cell indices:  ";
 
		/*copy(shuffled_cells.begin(),shuffled_cells.end(),ostream_iterator<int>(cerr," "));
 
		 cerr << endl;*/
 
		c->m=this;
 
		return c;
 
	}
 
	
 
	//int Delaunay(void);
 
	void CircumCircle(double x1,double y1,double x2,double y2,double x3,double y3,
 
					  double *xc,double *yc,double *r);
 
	
 
	
 
	// void RenumberCells(void);
 
	
 
};
 
#endif
0 comments (0 inline, 0 general)