diff --git a/README b/README.md copy from README copy to README.md --- a/README +++ b/README.md @@ -0,0 +1,78 @@ +Overview +======== + +VirtualLeaf is a cell-based computer-modeling framework for plant +tissue morphogenesis. The current version defines a set of +biologically-intuitive C++ objects, including cells, cell walls, and +diffusing and reacting chemicals, that provide useful abstractions for +building biological simulations of developmental +processes. VirtualLeaf?-based models provide a means for plant +researchers to analyze the function of developmental genes in the +context of the biophysics of growth and patterning. The VirtualLeaf? +runs on Windows, Mac and Linux. + + +Papers on VirtualLeaf +--------------------- + +If you use VirtualLeaf in your work, please cite our paper [Merks, +R. M. H., Guravage, M., Inzé, D., & Beemster, +G. T. S. (2011). VirtualLeaf: An Open-Source Framework for Cell-Based +Modeling of Plant Tissue Growth and Development. Plant Phys., 155(2), +656–666](http://www.plantphysiol.org/cgi/content/short/pp.110.167619?keytype=ref&ijkey=YTmfxrHG5QCsa8k) +(Open Access). + +A step-by-step introduction to building models with the VirtualLeaf?, +providing basic example models of leaf venation and meristem +development, is available in [Merks, R. M. H., & Guravage, +M. A. (2012). Building Simulation Models of Developing Plant Organs +Using VirtualLeaf. In Methods in Molecular Biology (Vol. 959, +pp. 333–352)](http://link.springer.com/protocol/10.1007%2F978-1-62703-221-6_23), +[preprint](http://link.springer.com/protocol/10.1007%2F978-1-62703-221-6_23). +A list of problems, issues, and solutions re: this book chapter is +maintained on googlecode. + +If need assistance in setting up parameter studies for your model, +please see our chapter [Palm, M.M., & Merks, +R.M.H. (2014). Large-Scale Parameter Studies of Cell-Based Models of +Tissue Morphogenesis Using CompuCell3D or VirtualLeaf. In Methods in +Molecular Biology (Vol. 1189)](http://www.springer.com/life+sciences/cell+biology/book/978-1-4939-1163-9). + + +Papers using VirtualLeaf +------------------------ + +Dirk De Vos, Kris Vissenberg, Jan Broeckhove, Gerrit T. S. Beemster +(2014). Putting Theory to the Test: Which Regulatory Mechanisms Can +Drive Realistic Growth of a Root? PLoS Computational Biology, 10(10), +e1003910. doi:10.1371/journal.pcbi.1003910 + +De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., +Novák, O., et al. (2014). Integration of growth and patterning during +vascular tissue formation in Arabidopsis. Science (New York, NY), +345(6197), 1255215–1255215. doi:10.1126/science.1255215 + +D. Draelants, D. Avitabile, & W. Vanroose, [Localised auxin peaks in +concentration-based transport models for plants](http://arxiv.org/abs/1403.3926) +[arXiv:1403.3926]. + +Van Mourik, S., Kaufmann, K., Van Dijk, A. D. J., Angenent, G. C., +Merks, R. M. H., & Molenaar, J. (2012). Simulation of Organ Patterning +on the Floral Meristem Using a Polar Auxin Transport Model. PLoS ONE, +7(1), e28762. doi:10.1371/journal.pone.0028762.s018 + +Wabnik, K., Kleine-Vehn, J., Balla, J., Sauer, M., Naramoto, S., +Reinöhl, V., et al. (2010). Emergence of tissue polarization from +synergy of intracellular and extracellular auxin signaling. Molecular +Systems Biology, 6, 447. doi:10.1038/msb.2010.103 + +R M H Merks, Van de Peer, Y., Inzé, D., & Beemster, +G. T. S. (2007). Canalization without flux sensors: a traveling-wave +hypothesis. Trends in Plant Science, 12(9), +384–390. doi:10.1016/j.tplants.2007.08.004 + + +Downloads +--------- + +[Download the VirtualLeaf](https://drive.google.com/folderview?id=0B4SMVyYUsosrbVY3LTRXUHd5WWs&usp=sharing).