diff --git a/src/build_models/auxingrowthplugin.cpp b/src/build_models/auxingrowthplugin.cpp new file mode 100644 --- /dev/null +++ b/src/build_models/auxingrowthplugin.cpp @@ -0,0 +1,296 @@ +/* + * + * This file is part of the Virtual Leaf. + * + * The Virtual Leaf is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * The Virtual Leaf is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with the Virtual Leaf. If not, see . + * + * Copyright 2010 Roeland Merks. + * + */ + +#include +#include +#include "../simplugin.h" + +#include "parameter.h" + +#include "wallbase.h" +#include "cellbase.h" +#include "auxingrowthplugin.h" + +#include "far_mem_5.h" + +static const std::string _module_id("$Id$"); + +bool batch = false; + + +// To be executed after cell division +void AuxinGrowthPlugin::OnDivide(ParentInfo &parent_info, CellBase &daughter1, CellBase &daughter2) { + // Auxin distributes between parent and daughter according to area + double area1 = daughter1.Area(), area2 = daughter2.Area(); + double tot_area = area1 + area2; + + daughter1.SetChemical(0,daughter1.Chemical(0)*(area1/tot_area)); + daughter2.SetChemical(0,daughter2.Chemical(0)*(area2/tot_area)); + + // After divisions, parent and daughter cells get a standard stock of PINs. + daughter1.SetChemical(1, par->initval[1]); + daughter2.SetChemical(1, par->initval[1]); + + + // Reset transporter values of parent and daughter + QList walls; + foreach(WallBase *w, walls) { + w->setTransporter(&daughter1, 1, 0.); + } + + //daughter1.LoopWalls(Wall::setTransporter(&daughter1, 1, 0.)); + + + /* for (list::const_iterator w=daughter2.walls.begin(); + w!=daughter2.walls.end(); + w++) { + // reset transporter value + (*w)->setTransporter(&daughter2, 1, 0.); + } + */ +} + +void AuxinGrowthPlugin::SetCellColor(CellBase &c, QColor &color) { + + // Red: PIN1 + // Green: Auxin + if (c.CellType()==1) color = QColor("Blue"); + else color.setRgb(c.Chemical(1)/(1+c.Chemical(1)) * 255.,(c.Chemical(0)/(1+c.Chemical(0)) * 255.),/* (chem[2]/(1+chem[2]) *255.) */ 0); + +} + + + +void AuxinGrowthPlugin::CellHouseKeeping(CellBase &c) { + + if (c.Boundary()==CellBase::None) { + if (c.Area() > par->rel_cell_div_threshold * c.BaseArea() ) { + c.SetChemical(0,0); + c.Divide(); + } + if (c.Chemical(0)>0.6) { + c.SetCellType(1); + } + // expand according to auxin concentration + c.EnlargeTargetArea(par->auxin_dependent_growth?(c.Chemical(0)/(1.+c.Chemical(0)))*par->cell_expansion_rate:par->cell_expansion_rate); + } + + +} + +void AuxinGrowthPlugin::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) { + + // leaf edge is const source of auxin + // (Neumann boundary condition: we specify the influx) + if (w->C2()->BoundaryPolP()) { + if (w->AuxinSource()) { + double aux_flux = par->leaf_tip_source * w->Length(); + dchem_c1[0]+= aux_flux; + // dchem_c2 is undefined..! + return; + } else { + return; + } + } + + + if (w->C1()->BoundaryPolP()) { + + if (w->AuxinSource()) { + double aux_flux = par->leaf_tip_source * w->Length(); + dchem_c2[0] += aux_flux; + // dchem_c1 is undefined...! + return; + } else { + + if (w->AuxinSink()) { + + // efflux into Shoot Apical meristem + // we assume all PINs are directed towards shoot apical meristem + dchem_c2[0] -= par->sam_efflux * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)); + + return; + } else + return; + } + } + + + // Passive fluxes (Fick's law) + // only auxin flux now + // flux depends on edge length and concentration difference + int c=0; + double phi = w->Length() * ( par->D[c] ) * ( w->C2()->Chemical(c) - w->C1()->Chemical(c) ); + dchem_c1[c] += phi; + dchem_c2[c] -= phi; + + // Active fluxes (PIN1 mediated transport) + + // (Transporters measured in moles, here) + // efflux from cell 1 to cell 2 + double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) ); + + // efflux from cell 2 to cell 1 + double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) ); + + dchem_c1[0] += trans21 - trans12; + dchem_c2[0] += trans12 - trans21; + +} + +void AuxinGrowthPlugin::WallDynamics(Wall *w, double *dw1, double *dw2) { + + + + // Cells polarize available PIN1 to Shoot Apical Meristem + if (w->C2()->BoundaryPolP()) { + if (w->AuxinSink()) { + + dw1[0] = 0.; dw2[0] = 0.; + //dw1[2] = 0.; dw2[2] = 0.; + + // assume high auxin concentration in SAM, to convince PIN1 to polarize to it + // exocytosis regulated0 + double nb_auxin = par->sam_auxin; + double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin); + + dw1[1] = par->k1 * w->C1()->Chemical(1) * receptor_level /( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1); + + dw2[1] = 0.; + return; + + } else { + dw1[0]=dw2[0]=dw1[1]=dw2[1];//=dw1[2]=dw2[2]; + return; + } + } + + if (w->C1()->BoundaryPolP()) { + if (w->AuxinSink()) { + + dw1[0] = 0.; dw2[0] = 0.; + //dw1[2] = 0.; dw2[2] = 0.; + + // assume high auxin concentration in SAM, to convince PIN1 to polarize to it + // exocytosis regulated + double nb_auxin = par->sam_auxin; + double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin); + dw2[1] = par->k1 * w->C2()->Chemical(1) * receptor_level /( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1); + + dw1[1] = 0.; + return; + + } else { + dw1[0]=dw2[0]=dw1[1]=dw2[1];//=dw1[2]=dw2[2]; + return; + } + } + + + + // PIN1 localization at wall 1 + // Note: chemical 0 is Auxin (intracellular storage only) + // Chemical 1 is PIN1 (walls and intracellular storage) + //! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$ + // Note that Pij is measured in term of concentration (mol/L) + // Pi in terms of quantity (mol) + + double dPijdt1=0., dPijdt2=0.; + + // normal cell + double auxin2 = w->C2()->Chemical(0); + double receptor_level1 = auxin2 * par->r / (par->kr + auxin2); + + dPijdt1 = + // exocytosis regulated + par->k1 * w->C1()->Chemical(1) * receptor_level1 / ( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1); + + double auxin1 = w->C1()->Chemical(0); + double receptor_level2 = auxin1 * par->r / (par->kr + auxin1); + + // normal cell + dPijdt2 = + + // exocytosis regulated + par->k1 * w->C2()->Chemical(1) * receptor_level2 / ( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1); + + /* PIN1 of neighboring vascular cell inhibits PIN1 endocytosis */ + + dw1[0] = 0.; dw2[0] = 0.; + //dw1[2] = 0.; dw2[2] = 0.; + + dw1[1] = dPijdt1; + dw2[1] = dPijdt2; +} + +double AuxinGrowthPlugin::complex_PijAj(CellBase &here, CellBase &nb, Wall &w) { + + // gives the amount of complex "auxinreceptor-Pin1" at the wall (at QSS) + //return here.Chemical(1) * nb.Chemical(0) / ( par->km + here.Chemical(1)); + + double nb_aux = (nb.BoundaryPolP() && w.AuxinSink()) ? par->sam_auxin : nb.Chemical(0); + double receptor_level = nb_aux * par->r / (par->kr + nb_aux); + + return here.Chemical(1) * receptor_level / ( par->km + here.Chemical(1)); + +} + +void AuxinGrowthPlugin::CellDynamics(CellBase *c, double *dchem) { + // Note: Pi and Pij measured in numbers of molecules, not concentrations + double dPidt = 0.; + + double sum_Pij = c->SumTransporters( 1 ); + + // exocytosis regulated: + + dPidt = -par->k1 * c->ReduceCellAndWalls( far_3_arg_mem_fun( *this, &AuxinGrowthPlugin::complex_PijAj ) ) + par->k2 * sum_Pij; + /*for ( list::const_iterator w = c->walls.begin(); + w!=walls.end(); + w++) { + if ((*w)->C1() == c) + dPidt += complex_PijAj( (*w)->C1(), (*w)->C2(), *w ); + else + dPidt += complex_PijAj( (*w)->C2(), (*w)->C1(), *w ); + }*/ + + // production of PIN depends on auxin concentration + dPidt += (c->AtBoundaryP()?par->pin_prod_in_epidermis:par->pin_prod) * c->Chemical(0) - c->Chemical(1) * par->pin_breakdown; + + // no PIN production in SAM + if (c->Boundary() == CellBase::SAM) { + dchem[1]=0.; + dchem[0]= - par->sam_auxin_breakdown * c->Chemical(0); + } else { + + dchem[1] = dPidt; + + + // source of auxin + dchem[0] = par->aux_cons - par->aux_breakdown * c->Chemical(0); + + } + + + +} + + +Q_EXPORT_PLUGIN2(auxingrowthplugin, AuxinGrowthPlugin)