/* * * This file is part of the Virtual Leaf. * * The Virtual Leaf is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * The Virtual Leaf is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Virtual Leaf. If not, see . * * Copyright 2010 Roeland Merks. * */ #include #include #include "simplugin.h" #include "parameter.h" #include "wallbase.h" #include "cellbase.h" #include "leafplugin.h" #include "far_mem_5.h" static const std::string _module_id("$Id$"); bool batch = false; // To be executed after cell division void LeafPlugin::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2) { // PIN1 distributes between parent and daughter according to area double area = daughter1->Area(), daughter_area = daughter2->Area(); double tot_area = area + daughter_area; //chem[1]*=(area/tot_area); //daughter.chem[1]*=(daughter_area/tot_area); // For lack of detailed data, or a better rule, we assume that cells remain polarized // after division // So the PIN1 is redistributed according to the original polarization over the walls // parent_info contains info about the parent // redistribute the PIN in the endosome according to area // "Fudge" rule: if one of the cells is at the boundary, remove all AUX1 in the other cell if (daughter1->AtBoundaryP() && !daughter2->AtBoundaryP()) { //daughter2->new_chem[2]=daughter2->chem[2]=0.; daughter2->SetNewChem(2,0); daughter2->SetChemical(2,0); //daughter.new_chem[0]=daughter.chem[0]=0.; //cerr << "Clearing daughter\n"; //for (list::const_iterator w=daughter.walls.begin(); // w!=daughter.walls.end(); // w++) { // (*w)->setTransporter(&daughter, 1, 0.); //} //new_chem[2]=chem[2]=parent_info->PINendosome; daughter1->SetNewChem(2,parent_info->PINendosome); daughter1->SetChemical(2,parent_info->PINendosome); } else { if (daughter2->AtBoundaryP() && !daughter1->AtBoundaryP()) { //new_chem[2]=chem[2]=0.; daughter1->SetNewChem(2,0); daughter1->SetChemical(2,0); /*new_chem[0]=chem[0]=0.; for (list::const_iterator w=walls.begin(); w!=walls.end(); w++) { (*w)->setTransporter(this, 1, 0.); }*/ //daughter2->chem[2]=parent_info->PINendosome; daughter2->SetChemical(2,parent_info->PINendosome); //cerr << "Clearing parent\n"; } else { //daughter1->new_chem[2]=daughter1->chem[2] = parent_info->PINendosome*(area/tot_area); daughter1->SetNewChem(2,parent_info->PINendosome*(area/tot_area)); daughter1->SetChemical(2, parent_info->PINendosome*(area/tot_area)); //daughter2->new_chem[2]=daughter2->chem[2] = parent_info->PINendosome*(daughter_area/tot_area); daughter2->SetNewChem(2,parent_info->PINendosome*(daughter_area/tot_area)); daughter2->SetChemical(2,parent_info->PINendosome*(daughter_area/tot_area)); } } /* // NB: Code commented out; not yet adapted to plugin format... RM 18/12/2009 // Now redistribute the membrane PINs according to the original polarization in the parent // mmm... I'd like to have a better, biologically motivated rule for this, // but for lack of something better... I hope I'm excused :-). Let's say the overall // organization of the actin fibres is not completely destroyed after division... // distribute wallPINs according to the circumference of the parent and daughter double circ = Circumference( ); double daughter_circ = daughter.Circumference(); double tot_circ = circ + daughter_circ; double wallPINs = (circ / tot_circ) * parent_info->PINmembrane; double daughter_wallPINs = (daughter_circ / tot_circ) * parent_info->PINmembrane; //cerr << "wallPINs = " << wallPINs << ", daughter_wallPINs = " << daughter_wallPINs << "sum = " << wallPINs + daughter_wallPINs << ", PINmembrane = " << parent_info->PINmembrane << endl; // distrubute it according to the overall polarity Vector polarization = parent_info->polarization.Normalised().Perp2D(); double sum=0.; for (list::const_iterator w=walls.begin(); w!=walls.end(); w++) { // distribute according to angle (0 degrees: maximum, 180 degrees minimum) double tmp=InnerProduct((*w)->getWallVector(this),polarization); // move domain from [-1,1] to [0,1] cerr << "[" << tmp << "]"; sum+=tmp; //(*w)->setTransporter(this, 1, } //cerr << "Sum is " << sum << endl; //double sum_wall_Pi = SumTransporters(1); // After division, cells produce PIN1 (in intracellular storage) until total amount becomes Pi_tot //SetChemical(1, par.Pi_tot - sum_wall_Pi ); //SetNewChem(1, Chemical(1)); //cerr << "[ " << sum_wall_Pi + Chemical(1) << "]"; */ } void LeafPlugin::SetCellColor(CellBase *c, QColor *color) { // Red: AUX1 // Green: Auxin // Blue: van-3 // color->setRgb(chem[2]/(1+chem[2]) * 255.,(chem[0]/(1+chem[0]) * 255.),(chem[3]/(1+chem[3]) *255.) ); color->setRgb(c->Chemical(2)/(1+c->Chemical(2)) * 255.,(c->Chemical(0)/(1+c->Chemical(0)) * 255.),(c->Chemical(3)/(1+c->Chemical(3)) *255.) ); } void LeafPlugin::CellHouseKeeping(CellBase *c) { if (c->Boundary()==CellBase::None) { if (c->Area() > par->rel_cell_div_threshold * c->BaseArea() ) { //c->SetChemical(0,0); c->Divide(); } // expand if this is not a provascular cell if (c->Chemical(3) < 0.7 ) { c->EnlargeTargetArea(par->cell_expansion_rate); } } } void LeafPlugin::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) { // leaf edge is const source of auxin // (Neumann boundary condition: we specify the influx) if (w->C2()->BoundaryPolP()) { if (w->AuxinSource()) { double aux_flux = par->leaf_tip_source * w->Length(); dchem_c1[0]+= aux_flux; // dchem_c2 is undefined..! return; } else { if (w->AuxinSink()) { // efflux into Shoot Apical meristem // we assume all PINs are directed towards shoot apical meristem dchem_c1[0] -= par->sam_efflux * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)); return; } else { // Active fluxes (PIN1 and AUX1 mediated transport) // (Transporters measured in moles, here) // efflux from cell 1 to cell 2 double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) + par->aux1transport * w->C2()->Chemical(2) * w->C1()->Chemical(0) / (par->kaux1 + w->C1()->Chemical(0)) ); // efflux from cell 2 to cell 1 double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) + par->aux1transport * w->C1()->Chemical(2) * w->C2()->Chemical(0) / (par->kaux1 + w->C2()->Chemical(0)) ); dchem_c1[0] += trans21 - trans12; dchem_c2[0] += trans12 - trans21; return; } } } if (w->C1()->BoundaryPolP()) { if (w->AuxinSource()) { double aux_flux = par->leaf_tip_source * w->Length(); dchem_c2[0] += aux_flux; // dchem_c1 is undefined...! return; } else { if (w->AuxinSink()) { // efflux into Shoot Apical meristem // we assume all PINs are directed towards shoot apical meristem // no passive fluxes: outside is impermeable // Active fluxes (PIN1 and AUX1 mediated transport) // (Transporters measured in moles, here) // efflux from cell 1 to cell 2 // assumption: no AUX1 in shoot apical meristem double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0))); dchem_c1[0] += - trans12; return; //dchem_c2[0] -= par->sam_efflux * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)); // return; } else { } } } // Passive fluxes (Fick's law) // only auxin flux now // flux depends on edge length and concentration difference for (int c=0;cLength() * ( par->D[c] ) * ( w->C2()->Chemical(c) - w->C1()->Chemical(c) ); dchem_c1[c] += phi; dchem_c2[c] -= phi; } // Active fluxes (PIN1 and AUX1 mediated transport) // (Transporters measured in moles, here) // efflux from cell 1 to cell 2 double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) + par->aux1transport * w->C2()->Chemical(2) * w->C1()->Chemical(0) / (par->kaux1 + w->C1()->Chemical(0)) ); // efflux from cell 2 to cell 1 double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) + par->aux1transport * w->C1()->Chemical(2) * w->C2()->Chemical(0) / (par->kaux1 + w->C2()->Chemical(0)) ); dchem_c1[0] += trans21 - trans12; dchem_c2[0] += trans12 - trans21; } void LeafPlugin::WallDynamics(Wall *w, double *dw1, double *dw2) { // Cells polarize available PIN1 to Shoot Apical Meristem if (w->C2()->BoundaryPolP()) { if (w->AuxinSink()) { dw1[0] = 0.; dw2[0] = 0.; dw1[2] = 0.; dw2[2] = 0.; // assume high auxin concentration in SAM, to convince PIN1 to polarize to it // exocytosis regulated0 double nb_auxin = par->sam_auxin; double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin); dw1[1] = par->k1 * w->C1()->Chemical(1) * receptor_level /( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1); dw2[1] = 0.; return; } else { dw1[0]=dw2[0]=dw1[1]=dw2[1]=dw1[2]=dw2[2]; return; } } if (w->C1()->BoundaryPolP()) { if (w->AuxinSink()) { dw1[0] = 0.; dw2[0] = 0.; dw1[2] = 0.; dw2[2] = 0.; // assume high auxin concentration in SAM, to convince PIN1 to polarize to it // exocytosis regulated double nb_auxin = par->sam_auxin; double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin); dw2[1] = par->k1 * w->C2()->Chemical(1) * receptor_level /( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1); dw1[1] = 0.; return; } else { dw1[0]=dw2[0]=dw1[1]=dw2[1]=dw1[2]=dw2[2]; return; } } // PIN1 localization at wall 1 // Note: chemical 0 is Auxin (intracellular storage only) // Chemical 1 is PIN1 (walls and intracellular storage) //! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$ // Note that Pij is measured in term of concentration (mol/L) // Pi in terms of quantity (mol) double dPijdt1=0., dPijdt2=0.; // normal cell double auxin2 = w->C2()->Chemical(0); double receptor_level1 = auxin2 * par->r / (par->kr + auxin2); dPijdt1 = // exocytosis regulated par->k1 * w->C1()->Chemical(1) * receptor_level1 / ( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1); double auxin1 = w->C1()->Chemical(0); double receptor_level2 = auxin1 * par->r / (par->kr + auxin1); // normal cell dPijdt2 = // exocytosis regulated par->k1 * w->C2()->Chemical(1) * receptor_level2 / ( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1); /* PIN1 of neighboring vascular cell inhibits PIN1 endocytosis */ dw1[0] = 0.; dw2[0] = 0.; dw1[2] = 0.; dw2[2] = 0.; dw1[1] = dPijdt1; dw2[1] = dPijdt2; } double LeafPlugin::complex_PijAj(CellBase *here, CellBase *nb, Wall *w) { // gives the amount of complex "auxinreceptor-Pin1" at the wall (at QSS) //return here.Chemical(1) * nb.Chemical(0) / ( par->km + here.Chemical(1)); double nb_aux = (nb->BoundaryPolP() && w->AuxinSink()) ? par->sam_auxin : nb->Chemical(0); double receptor_level = nb_aux * par->r / (par->kr + nb_aux); return here->Chemical(1) * receptor_level / ( par->km + here->Chemical(1)); } void LeafPlugin::CellDynamics(CellBase *c, double *dchem) { double dPidt = 0.; double sum_Pij = c->SumTransporters( 1 ); // exocytosis regulated: // van3 expression reduces rate of PIN1 endocytosis dPidt = -par->k1 * c->ReduceCellAndWalls( far_3_arg_mem_fun( *this, &LeafPlugin::complex_PijAj ) ) + (c->Chemical(3) < 0.5 ? par->k2 : par->k2van3) * sum_Pij; // production of PIN depends on auxin concentration dPidt += (c->AtBoundaryP()?par->pin_prod_in_epidermis:par->pin_prod) * c->Chemical(0) - c->Chemical(1) * par->pin_breakdown; /*if (c->AtBoundaryP()) { dchem[2] = 0.01; //cerr << "Making cell blue.\n"; } else { dchem[2] = -0.1 * c->Chemical(2); }*/ // no PIN production in SAM if (c->Boundary() == CellBase::SAM) { dchem[1]=0.; dchem[0]= - par->sam_auxin_breakdown * c->Chemical(0); dchem[2]=0.; } else { dchem[1] = dPidt; // source of auxin dchem[0] = par->aux_cons; // auxin-induced AUX1 production, in the epidermis dchem[2] = ( c->AtBoundaryP() ? par->aux1prod : par->aux1prodmeso ) * ( c->Chemical(0) / ( 1. + par->kap * c->Chemical(0) ) ) - ( par->aux1decay ) * c->Chemical(2) ;//: 0.; // auxin-induced production of VAN-3? Autokatalysis? //dchem[3] = par->van3prod * (c->Chemical(0) / (1. + par->kvp * c-> Chemical(0) ) ) double A = c->Chemical(0); double van3 = c->Chemical(3); dchem[3] = par->van3prod * A - par->van3autokat * van3 + van3*van3/(1 + par->van3sat * van3*van3 ); } } Q_EXPORT_PLUGIN2(leafplugin, LeafPlugin)