/*
*
* This file is part of the Virtual Leaf.
*
* The Virtual Leaf is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The Virtual Leaf is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Virtual Leaf. If not, see .
*
* Copyright 2010 Roeland Merks.
*
*/
#include
#include
#include "simplugin.h"
#include "parameter.h"
#include "wallbase.h"
#include "cellbase.h"
#include "leafplugin.h"
#include "far_mem_5.h"
static const std::string _module_id("$Id$");
bool batch = false;
// To be executed after cell division
void LeafPlugin::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2) {
// PIN1 distributes between parent and daughter according to area
double area = daughter1->Area(), daughter_area = daughter2->Area();
double tot_area = area + daughter_area;
//chem[1]*=(area/tot_area);
//daughter.chem[1]*=(daughter_area/tot_area);
// For lack of detailed data, or a better rule, we assume that cells remain polarized
// after division
// So the PIN1 is redistributed according to the original polarization over the walls
// parent_info contains info about the parent
// redistribute the PIN in the endosome according to area
// "Fudge" rule: if one of the cells is at the boundary, remove all AUX1 in the other cell
if (daughter1->AtBoundaryP() && !daughter2->AtBoundaryP()) {
//daughter2->new_chem[2]=daughter2->chem[2]=0.;
daughter2->SetNewChem(2,0);
daughter2->SetChemical(2,0);
//daughter.new_chem[0]=daughter.chem[0]=0.;
//cerr << "Clearing daughter\n";
//for (list::const_iterator w=daughter.walls.begin();
// w!=daughter.walls.end();
// w++) {
// (*w)->setTransporter(&daughter, 1, 0.);
//}
//new_chem[2]=chem[2]=parent_info->PINendosome;
daughter1->SetNewChem(2,parent_info->PINendosome);
daughter1->SetChemical(2,parent_info->PINendosome);
} else {
if (daughter2->AtBoundaryP() && !daughter1->AtBoundaryP()) {
//new_chem[2]=chem[2]=0.;
daughter1->SetNewChem(2,0);
daughter1->SetChemical(2,0);
/*new_chem[0]=chem[0]=0.;
for (list::const_iterator w=walls.begin();
w!=walls.end();
w++) {
(*w)->setTransporter(this, 1, 0.);
}*/
//daughter2->chem[2]=parent_info->PINendosome;
daughter2->SetChemical(2,parent_info->PINendosome);
//cerr << "Clearing parent\n";
} else {
//daughter1->new_chem[2]=daughter1->chem[2] = parent_info->PINendosome*(area/tot_area);
daughter1->SetNewChem(2,parent_info->PINendosome*(area/tot_area));
daughter1->SetChemical(2, parent_info->PINendosome*(area/tot_area));
//daughter2->new_chem[2]=daughter2->chem[2] = parent_info->PINendosome*(daughter_area/tot_area);
daughter2->SetNewChem(2,parent_info->PINendosome*(daughter_area/tot_area));
daughter2->SetChemical(2,parent_info->PINendosome*(daughter_area/tot_area));
}
}
/*
// NB: Code commented out; not yet adapted to plugin format... RM 18/12/2009
// Now redistribute the membrane PINs according to the original polarization in the parent
// mmm... I'd like to have a better, biologically motivated rule for this,
// but for lack of something better... I hope I'm excused :-). Let's say the overall
// organization of the actin fibres is not completely destroyed after division...
// distribute wallPINs according to the circumference of the parent and daughter
double circ = Circumference( );
double daughter_circ = daughter.Circumference();
double tot_circ = circ + daughter_circ;
double wallPINs = (circ / tot_circ) * parent_info->PINmembrane;
double daughter_wallPINs = (daughter_circ / tot_circ) * parent_info->PINmembrane;
//cerr << "wallPINs = " << wallPINs << ", daughter_wallPINs = " << daughter_wallPINs << "sum = " << wallPINs + daughter_wallPINs << ", PINmembrane = " << parent_info->PINmembrane << endl;
// distrubute it according to the overall polarity
Vector polarization = parent_info->polarization.Normalised().Perp2D();
double sum=0.;
for (list::const_iterator w=walls.begin();
w!=walls.end();
w++) {
// distribute according to angle (0 degrees: maximum, 180 degrees minimum)
double tmp=InnerProduct((*w)->getWallVector(this),polarization); // move domain from [-1,1] to [0,1]
cerr << "[" << tmp << "]";
sum+=tmp;
//(*w)->setTransporter(this, 1,
}
//cerr << "Sum is " << sum << endl;
//double sum_wall_Pi = SumTransporters(1);
// After division, cells produce PIN1 (in intracellular storage) until total amount becomes Pi_tot
//SetChemical(1, par.Pi_tot - sum_wall_Pi );
//SetNewChem(1, Chemical(1));
//cerr << "[ " << sum_wall_Pi + Chemical(1) << "]";
*/
}
void LeafPlugin::SetCellColor(CellBase *c, QColor *color) {
// Red: AUX1
// Green: Auxin
// Blue: van-3
// color->setRgb(chem[2]/(1+chem[2]) * 255.,(chem[0]/(1+chem[0]) * 255.),(chem[3]/(1+chem[3]) *255.) );
color->setRgb(c->Chemical(2)/(1+c->Chemical(2)) * 255.,(c->Chemical(0)/(1+c->Chemical(0)) * 255.),(c->Chemical(3)/(1+c->Chemical(3)) *255.) );
}
void LeafPlugin::CellHouseKeeping(CellBase *c) {
if (c->Boundary()==CellBase::None) {
if (c->Area() > par->rel_cell_div_threshold * c->BaseArea() ) {
//c->SetChemical(0,0);
c->Divide();
}
// expand if this is not a provascular cell
if (c->Chemical(3) < 0.7 ) {
c->EnlargeTargetArea(par->cell_expansion_rate);
}
}
}
void LeafPlugin::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) {
// leaf edge is const source of auxin
// (Neumann boundary condition: we specify the influx)
if (w->C2()->BoundaryPolP()) {
if (w->AuxinSource()) {
double aux_flux = par->leaf_tip_source * w->Length();
dchem_c1[0]+= aux_flux;
// dchem_c2 is undefined..!
return;
} else {
if (w->AuxinSink()) {
// efflux into Shoot Apical meristem
// we assume all PINs are directed towards shoot apical meristem
dchem_c1[0] -= par->sam_efflux * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0));
return;
} else {
// Active fluxes (PIN1 and AUX1 mediated transport)
// (Transporters measured in moles, here)
// efflux from cell 1 to cell 2
double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0))
+ par->aux1transport * w->C2()->Chemical(2) * w->C1()->Chemical(0) / (par->kaux1 + w->C1()->Chemical(0)) );
// efflux from cell 2 to cell 1
double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0))
+ par->aux1transport * w->C1()->Chemical(2) * w->C2()->Chemical(0) / (par->kaux1 + w->C2()->Chemical(0)) );
dchem_c1[0] += trans21 - trans12;
dchem_c2[0] += trans12 - trans21;
return;
}
}
}
if (w->C1()->BoundaryPolP()) {
if (w->AuxinSource()) {
double aux_flux = par->leaf_tip_source * w->Length();
dchem_c2[0] += aux_flux;
// dchem_c1 is undefined...!
return;
} else {
if (w->AuxinSink()) {
// efflux into Shoot Apical meristem
// we assume all PINs are directed towards shoot apical meristem
// no passive fluxes: outside is impermeable
// Active fluxes (PIN1 and AUX1 mediated transport)
// (Transporters measured in moles, here)
// efflux from cell 1 to cell 2
// assumption: no AUX1 in shoot apical meristem
double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)));
dchem_c1[0] += - trans12;
return;
//dchem_c2[0] -= par->sam_efflux * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0));
// return;
} else {
}
}
}
// Passive fluxes (Fick's law)
// only auxin flux now
// flux depends on edge length and concentration difference
for (int c=0;cLength() * ( par->D[c] ) * ( w->C2()->Chemical(c) - w->C1()->Chemical(c) );
dchem_c1[c] += phi;
dchem_c2[c] -= phi;
}
// Active fluxes (PIN1 and AUX1 mediated transport)
// (Transporters measured in moles, here)
// efflux from cell 1 to cell 2
double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0))
+ par->aux1transport * w->C2()->Chemical(2) * w->C1()->Chemical(0) / (par->kaux1 + w->C1()->Chemical(0)) );
// efflux from cell 2 to cell 1
double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0))
+ par->aux1transport * w->C1()->Chemical(2) * w->C2()->Chemical(0) / (par->kaux1 + w->C2()->Chemical(0)) );
dchem_c1[0] += trans21 - trans12;
dchem_c2[0] += trans12 - trans21;
}
void LeafPlugin::WallDynamics(Wall *w, double *dw1, double *dw2) {
// Cells polarize available PIN1 to Shoot Apical Meristem
if (w->C2()->BoundaryPolP()) {
if (w->AuxinSink()) {
dw1[0] = 0.; dw2[0] = 0.;
dw1[2] = 0.; dw2[2] = 0.;
// assume high auxin concentration in SAM, to convince PIN1 to polarize to it
// exocytosis regulated0
double nb_auxin = par->sam_auxin;
double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin);
dw1[1] = par->k1 * w->C1()->Chemical(1) * receptor_level /( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1);
dw2[1] = 0.;
return;
} else {
dw1[0]=dw2[0]=dw1[1]=dw2[1]=dw1[2]=dw2[2];
return;
}
}
if (w->C1()->BoundaryPolP()) {
if (w->AuxinSink()) {
dw1[0] = 0.; dw2[0] = 0.;
dw1[2] = 0.; dw2[2] = 0.;
// assume high auxin concentration in SAM, to convince PIN1 to polarize to it
// exocytosis regulated
double nb_auxin = par->sam_auxin;
double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin);
dw2[1] = par->k1 * w->C2()->Chemical(1) * receptor_level /( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1);
dw1[1] = 0.;
return;
} else {
dw1[0]=dw2[0]=dw1[1]=dw2[1]=dw1[2]=dw2[2];
return;
}
}
// PIN1 localization at wall 1
// Note: chemical 0 is Auxin (intracellular storage only)
// Chemical 1 is PIN1 (walls and intracellular storage)
//! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$
// Note that Pij is measured in term of concentration (mol/L)
// Pi in terms of quantity (mol)
double dPijdt1=0., dPijdt2=0.;
// normal cell
double auxin2 = w->C2()->Chemical(0);
double receptor_level1 = auxin2 * par->r / (par->kr + auxin2);
dPijdt1 =
// exocytosis regulated
par->k1 * w->C1()->Chemical(1) * receptor_level1 / ( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1);
double auxin1 = w->C1()->Chemical(0);
double receptor_level2 = auxin1 * par->r / (par->kr + auxin1);
// normal cell
dPijdt2 =
// exocytosis regulated
par->k1 * w->C2()->Chemical(1) * receptor_level2 / ( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1);
/* PIN1 of neighboring vascular cell inhibits PIN1 endocytosis */
dw1[0] = 0.; dw2[0] = 0.;
dw1[2] = 0.; dw2[2] = 0.;
dw1[1] = dPijdt1;
dw2[1] = dPijdt2;
}
double LeafPlugin::complex_PijAj(CellBase *here, CellBase *nb, Wall *w) {
// gives the amount of complex "auxinreceptor-Pin1" at the wall (at QSS)
//return here.Chemical(1) * nb.Chemical(0) / ( par->km + here.Chemical(1));
double nb_aux = (nb->BoundaryPolP() && w->AuxinSink()) ? par->sam_auxin : nb->Chemical(0);
double receptor_level = nb_aux * par->r / (par->kr + nb_aux);
return here->Chemical(1) * receptor_level / ( par->km + here->Chemical(1));
}
void LeafPlugin::CellDynamics(CellBase *c, double *dchem) {
double dPidt = 0.;
double sum_Pij = c->SumTransporters( 1 );
// exocytosis regulated:
// van3 expression reduces rate of PIN1 endocytosis
dPidt = -par->k1 * c->ReduceCellAndWalls( far_3_arg_mem_fun( *this, &LeafPlugin::complex_PijAj ) ) +
(c->Chemical(3) < 0.5 ? par->k2 : par->k2van3) * sum_Pij;
// production of PIN depends on auxin concentration
dPidt += (c->AtBoundaryP()?par->pin_prod_in_epidermis:par->pin_prod) * c->Chemical(0) - c->Chemical(1) * par->pin_breakdown;
/*if (c->AtBoundaryP()) {
dchem[2] = 0.01;
//cerr << "Making cell blue.\n";
} else {
dchem[2] = -0.1 * c->Chemical(2);
}*/
// no PIN production in SAM
if (c->Boundary() == CellBase::SAM) {
dchem[1]=0.;
dchem[0]= - par->sam_auxin_breakdown * c->Chemical(0);
dchem[2]=0.;
} else {
dchem[1] = dPidt;
// source of auxin
dchem[0] = par->aux_cons;
// auxin-induced AUX1 production, in the epidermis
dchem[2] = ( c->AtBoundaryP() ? par->aux1prod : par->aux1prodmeso ) * ( c->Chemical(0) / ( 1. + par->kap * c->Chemical(0) ) ) - ( par->aux1decay ) * c->Chemical(2) ;//: 0.;
// auxin-induced production of VAN-3? Autokatalysis?
//dchem[3] = par->van3prod * (c->Chemical(0) / (1. + par->kvp * c-> Chemical(0) ) )
double A = c->Chemical(0);
double van3 = c->Chemical(3);
dchem[3] = par->van3prod * A - par->van3autokat * van3 + van3*van3/(1 + par->van3sat * van3*van3 );
}
}
Q_EXPORT_PLUGIN2(leafplugin, LeafPlugin)