/*
*
* This file is part of the Virtual Leaf.
*
* The Virtual Leaf is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The Virtual Leaf is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Virtual Leaf. If not, see .
*
* Copyright 2010 Roeland Merks.
*
*/
#include
#include
#include "../simplugin.h"
#include "parameter.h"
#include "wallbase.h"
#include "cellbase.h"
#include "auxingrowthplugin.h"
#include "far_mem_5.h"
static const std::string _module_id("$Id$");
bool batch = false;
// To be executed after cell division
void AuxinGrowthPlugin::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2) {
parent_info = NULL; // merely to obviate compile time error
// Auxin distributes between parent and daughter according to area
double area1 = daughter1->Area(), area2 = daughter2->Area();
double tot_area = area1 + area2;
daughter1->SetChemical(0,daughter1->Chemical(0)*(area1/tot_area));
daughter2->SetChemical(0,daughter2->Chemical(0)*(area2/tot_area));
// After divisions, parent and daughter cells get a standard stock of PINs.
daughter1->SetChemical(1, par->initval[1]);
daughter2->SetChemical(1, par->initval[1]);
// Reset transporter values of parent and daughter
QList walls;
foreach(WallBase *w, walls) {
w->setTransporter(daughter1, 1, 0.);
}
}
void AuxinGrowthPlugin::SetCellColor(CellBase *c, QColor *color) {
// Red: PIN1
// Green: Auxin
if (c->CellType()==1) color->setNamedColor("Blue");
else color->setRgb(c->Chemical(1)/(1+c->Chemical(1)) * 255.,(c->Chemical(0)/(1+c->Chemical(0)) * 255.),/* (chem[2]/(1+chem[2]) *255.) */ 0);
}
void AuxinGrowthPlugin::CellHouseKeeping(CellBase *c) {
if (c->Boundary()==CellBase::None) {
if (c->Area() > par->rel_cell_div_threshold * c->BaseArea() ) {
c->SetChemical(0,0);
c->Divide();
}
if (c->Chemical(0)>0.6) {
c->SetCellType(1);
}
// expand according to auxin concentration
c->EnlargeTargetArea(par->auxin_dependent_growth?(c->Chemical(0)/(1.+c->Chemical(0)))*par->cell_expansion_rate:par->cell_expansion_rate);
}
}
void AuxinGrowthPlugin::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) {
// leaf edge is const source of auxin
// (Neumann boundary condition: we specify the influx)
if (w->C2()->BoundaryPolP()) {
if (w->AuxinSource()) {
double aux_flux = par->leaf_tip_source * w->Length();
dchem_c1[0]+= aux_flux;
return;
} else {
return;
}
}
if (w->C1()->BoundaryPolP()) {
if (w->AuxinSource()) {
double aux_flux = par->leaf_tip_source * w->Length();
dchem_c2[0] += aux_flux;
return;
} else {
if (w->AuxinSink()) {
// efflux into Shoot Apical meristem
// we assume all PINs are directed towards shoot apical meristem
dchem_c2[0] -= par->sam_efflux * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0));
return;
} else
return;
}
}
// Passive fluxes (Fick's law)
// only auxin flux now
// flux depends on edge length and concentration difference
int c=0;
double phi = w->Length() * ( par->D[c] ) * ( w->C2()->Chemical(c) - w->C1()->Chemical(c) );
dchem_c1[c] += phi;
dchem_c2[c] -= phi;
// Active fluxes (PIN1 mediated transport)
// (Transporters measured in moles, here)
// efflux from cell 1 to cell 2
double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) );
// efflux from cell 2 to cell 1
double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) );
dchem_c1[0] += trans21 - trans12;
dchem_c2[0] += trans12 - trans21;
}
void AuxinGrowthPlugin::WallDynamics(Wall *w, double *dw1, double *dw2) {
// Cells polarize available PIN1 to Shoot Apical Meristem
if (w->C2()->BoundaryPolP()) {
if (w->AuxinSink()) {
dw1[0] = 0.; dw2[0] = 0.;
// assume high auxin concentration in SAM, to convince PIN1 to polarize to it
// exocytosis regulated0
double nb_auxin = par->sam_auxin;
double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin);
dw1[1] = par->k1 * w->C1()->Chemical(1) * receptor_level /( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1);
dw2[1] = 0.;
return;
} else {
dw1[0]=dw2[0]=dw1[1]=dw2[1];
return;
}
}
if (w->C1()->BoundaryPolP()) {
if (w->AuxinSink()) {
dw1[0] = 0.; dw2[0] = 0.;
// assume high auxin concentration in SAM, to convince PIN1 to polarize to it
// exocytosis regulated
double nb_auxin = par->sam_auxin;
double receptor_level = nb_auxin * par->r / (par->kr + nb_auxin);
dw2[1] = par->k1 * w->C2()->Chemical(1) * receptor_level /( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1);
dw1[1] = 0.;
return;
} else {
dw1[0]=dw2[0]=dw1[1]=dw2[1];
return;
}
}
// PIN1 localization at wall 1
// Note: chemical 0 is Auxin (intracellular storage only)
// Chemical 1 is PIN1 (walls and intracellular storage)
//! \f$ \frac{d Pij/dt}{dt} = k_1 A_j \frac{P_i}{L_ij} - k_2 P_{ij} \f$
// Note that Pij is measured in term of concentration (mol/L)
// Pi in terms of quantity (mol)
double dPijdt1=0., dPijdt2=0.;
// normal cell
double auxin2 = w->C2()->Chemical(0);
double receptor_level1 = auxin2 * par->r / (par->kr + auxin2);
dPijdt1 =
// exocytosis regulated
par->k1 * w->C1()->Chemical(1) * receptor_level1 / ( par->km + w->C1()->Chemical(1) ) - par->k2 * w->Transporters1(1);
double auxin1 = w->C1()->Chemical(0);
double receptor_level2 = auxin1 * par->r / (par->kr + auxin1);
// normal cell
dPijdt2 =
// exocytosis regulated
par->k1 * w->C2()->Chemical(1) * receptor_level2 / ( par->km + w->C2()->Chemical(1) ) - par->k2 * w->Transporters2(1);
/* PIN1 of neighboring vascular cell inhibits PIN1 endocytosis */
dw1[0] = 0.; dw2[0] = 0.;
dw1[1] = dPijdt1;
dw2[1] = dPijdt2;
}
double AuxinGrowthPlugin::complex_PijAj(CellBase *here, CellBase *nb, Wall *w) {
// gives the amount of complex "auxinreceptor-Pin1" at the wall (at QSS)
//return here.Chemical(1) * nb.Chemical(0) / ( par->km + here.Chemical(1));
double nb_aux = (nb->BoundaryPolP() && w->AuxinSink()) ? par->sam_auxin : nb->Chemical(0);
double receptor_level = nb_aux * par->r / (par->kr + nb_aux);
return here->Chemical(1) * receptor_level / ( par->km + here->Chemical(1));
}
void AuxinGrowthPlugin::CellDynamics(CellBase *c, double *dchem) {
// Note: Pi and Pij measured in numbers of molecules, not concentrations
double dPidt = 0.;
double sum_Pij = c->SumTransporters( 1 );
// exocytosis regulated:
dPidt = -par->k1 * c->ReduceCellAndWalls( far_3_arg_mem_fun( *this, &AuxinGrowthPlugin::complex_PijAj ) ) + par->k2 * sum_Pij;
// production of PIN depends on auxin concentration
dPidt += (c->AtBoundaryP()?par->pin_prod_in_epidermis:par->pin_prod) * c->Chemical(0) - c->Chemical(1) * par->pin_breakdown;
// no PIN production in SAM
if (c->Boundary() == CellBase::SAM) {
dchem[1]=0.;
dchem[0]= - par->sam_auxin_breakdown * c->Chemical(0);
} else {
dchem[1] = dPidt;
// source of auxin
dchem[0] = par->aux_cons - par->aux_breakdown * c->Chemical(0);
}
}
Q_EXPORT_PLUGIN2(auxingrowthplugin, AuxinGrowthPlugin)