/* * * This file is part of the Virtual Leaf. * * The Virtual Leaf is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * The Virtual Leaf is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Virtual Leaf. If not, see . * * Copyright 2010 Roeland Merks. * */ #include #include #include #include "simplugin.h" #include "parameter.h" #include "wallbase.h" #include "cellbase.h" #include "myauxinmodel.h" #include "flux_function.h" #include "math.h" #include "random.h" QString MyAuxinModel::ModelID(void) { // specify the name of your model here return QString( "Auxin upstream pumping" ); } // return the number of chemicals your model uses int MyAuxinModel::NChem(void) { return 2; } // To be executed after cell division void MyAuxinModel::OnDivide(ParentInfo *parent_info, CellBase *daughter1, CellBase *daughter2) { // rules to be executed after cell division go here // (e.g., cell differentiation rules) } void MyAuxinModel::SetCellColor(CellBase *c, QColor *color) { // add cell coloring rules here double colour; colour = c->Chemical(1) / (1.0 + c->Chemical(1)); double red = (colour < 0.0) ? 0.0 : (colour > 1.0) ? 1.0 : colour; colour = c->Chemical(0) / (1.0 + c->Chemical(0)); double green = (colour < 0.0) ? 0.0 : (colour > 1.0) ? 1.0 : colour; colour = c->Chemical(3) / (1.0 + c->Chemical(3)); double blue = (colour < 0.0) ? 0.0 : (colour > 1.0) ? 1.0 : colour; if ((red < 0 || red > 1) || (green < 0 || green > 1) || (blue < 0 || blue > 1)) qDebug() << "COLORS OUT OF RANGE: red: " << red << ", green: " << green << ", blue: " << blue << endl; color->setRgbF(red, green, blue); } void MyAuxinModel::CellHouseKeeping(CellBase *c) { // add cell behavioral rules here } void MyAuxinModel::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) { for (int c=0; cLength() * ( par->D[c] ) * ( w->C2()->Chemical(c) - w->C1()->Chemical(c) ); dchem_c1[c] += phi; dchem_c2[c] -= phi; } // active transport // efflux from cell 1 to cell 2 double trans12 = ( par->transport * w->Transporters1(1) * w->C1()->Chemical(0) / (par->ka + w->C1()->Chemical(0)) ); // efflux from cell 2 to cell 1 double trans21 = ( par->transport * w->Transporters2(1) * w->C2()->Chemical(0) / (par->ka + w->C2()->Chemical(0)) ); dchem_c1[0] += trans21 - trans12; dchem_c2[0] += trans12 - trans21; } void MyAuxinModel::WallDynamics(Wall *w, double *dw1, double *dw2){ // add biochemical networks for reactions occurring at walls here } void MyAuxinModel::CellDynamics(CellBase *c, double *dchem) { // add biochemical networks for intracellular reactions here } double MyAuxinModel::PINflux(CellBase *this_cell, CellBase *adjacent_cell, Wall *w) { // calculate PIN translocation rate from cell to membrane double adj_auxin = adjacent_cell->Chemical(0); double receptor_level = adj_auxin * par->r / (par->kr + adj_auxin); double pin_atwall; // pick the correct side of the Wall if (w->C1() == this_cell){ pin_atwall = w->Transporters1(1); } else{ pin_atwall=w->Transporters2(1); } double pin_flux = par->k1 * this_cell->Chemical(1) * receptor_level / ( par->km + this_cell->Chemical(1) ) - par->k2 * w->Transporters1(1); return pin_flux; } Q_EXPORT_PLUGIN2(myauxinmodel, MyAuxinModel) // finis