Changeset - 12c3faed77f6
[Not reviewed]
0 1 0
Arjen de Vries (arjen) - 11 years ago 2014-06-12 04:01:07
arjen.de.vries@cwi.nl
minor - remove table ref not necessary
1 file changed with 2 insertions and 2 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -495,194 +495,194 @@ these, 24162 unique document-entity pairs are vital (9521) or relevant
 
\caption{Percentage of vital or relevant documents retrieved under different name variants (upper part from cleansed, lower part from raw)}
 
\begin{center}
 
\begin{tabular}{l@{\quad}rrrrrrr}
 
\hline
 
&cano&cano-part  &all &all-part  \\
 
\hline
 
 
 
 
   Wikipedia      &61.8  &74.8  &71.5  &77.9\\
 
   Twitter        &1.9   &1.9   &41.7  &80.4\\
 
   All Entities   &51.0  &61.7  &66.2  &78.4 \\	
 
  
 
 
 
\hline
 
\hline
 
   Wikipedia      &70.0  &86.1  &82.4  &90.7\\
 
   Twitter        & 8.7  &8.7   &67.9  &88.2\\
 
  All Entities    &59.0  &72.2  &79.8  &90.2\\
 
\hline
 
 
\end{tabular}
 
\end{center}
 
\label{tab:name}
 
\end{table}
 
 
 
The upper part of Table \ref{tab:name} shows the recall performances on the cleansed version and the lower part on the raw version. The recall performances for all entity types  are increased substantially in the raw version. Recall increases on Wikipedia entities  vary from 8.2 to 12.8, and in Twitter entities from 6.8 to 26.2. In all entities, it ranges from 8.0 to 13.6.  The recall increases are substantial. To put it into perspective, an 11.8 increase in recall on all entities is a retrieval of 2864 more unique document-entity pairs. %This suggests that cleansing has removed some documents that we could otherwise retrieve. 
 
 
\subsection{Entity Profiles}
 
If we look at the recall performances for the raw corpus,   filtering documents by canonical names achieves a recall of  59\%.  Adding other name variants  improves the recall to 79.8\%, an increase of 20.8\%. This means  20.8\% of documents mentioned the entities by other names  rather than by their canonical names. Canonical partial  achieves a recall of 72\%  and name-variant partial achives 90.2\%. This says that 18.2\% of documents mentioned the entities by  partial names of other non-canonical name variants. 
 
 
 
%\begin{table*}
 
%\caption{Breakdown of recall percentage increases by document categories }
 
%\begin{center}\begin{tabular}{l*{9}{c}r}
 
% && \multicolumn{3}{ c| }{All entities}  & \multicolumn{3}{ c| }{Wikipedia} &\multicolumn{3}{ c| }{Twitter} \\ 
 
% & &others&news&social & others&news&social &  others&news&social \\
 
%\hline
 
% 
 
%\multirow{4}{*}{Vital}	 &cano-part $-$ cano  	&8.2  &14.9    &12.3           &9.1  &18.6   &14.1             &0      %&0       &0  \\
 
%                         &all$-$ cano         	&12.6  &19.7    &12.3          &5.5  &15.8   &8.4             &73   &35%.9    &38.3  \\
 
%	                 &all-part $-$ cano\_part&9.7    &18.7  &12.7       &0    &0.5  &5.1        &93.2 & 93 &64.4 \\%
 
%	                 &all-part $-$ all     	&5.4  &13.9     &12.7           &3.6  &3.3    &10.8              &20.3 %  &57.1    &26.1 \\
 
%	                 \hline
 
%	                 
 
%\multirow{4}{*}{Relevant}  &cano-part $-$ cano  	&10.5  &15.1    &12.2          &11.1  &21.7   &14.1            % &0   &0    &0  \\
 
%                         &all $-$ cano         	&11.7  &36.6    &17.3          &9.2  &19.5   &9.9             &%54.5   &76.3   &66  \\
 
%	                 &all-part $-$ cano-part &4.2  &26.9   &15.8          &0.2    &0.7    &6.7           &72.2   &8%7.6 &75 \\
 
%	                 &all-part $-$ all     	&3    &5.4     &10.7           &2.1  &2.9    &11              &18.2   &%11.3    &9 \\
 
%	                 
 
%	                 \hline
 
%\multirow{4}{*}{total} 	&cano-part $-$ cano   	&10.9   &15.5   &12.4         &11.9  &21.3   &14.4          &0 %    &0       &0\\
 
%			&all $-$ cano         	&13.8   &30.6   &16.9         &9.1  &18.9   &10.2          &63.6  &61.8%    &57.5 \\
 
%                        &all-part $-$ cano-part	&7.2   &24.8   &15.9          &0.1    &0.7    &6.8           &8%2.2  &89.1    &71.3\\
 
%                        &all-part $-$ all     	&4.3   &9.7    &11.4           &3.0  &3.1   &11.0          &18.9  &27.3%    &13.8\\	                 
 
%	                 
 
%                                  	                 
 
%\hline
 
%\end{tabular}
 
%\end{center}
 
%\label{tab:source-delta2}
 
%\end{table*}
 
 
 
 \begin{table*}
 
\caption{Breakdown of recall performances by document source category}
 
\begin{center}\begin{tabular}{l*{9}{c}r}
 
 && \multicolumn{3}{ c| }{All entities}  & \multicolumn{3}{ c| }{Wikipedia} &\multicolumn{3}{ c| }{Twitter} \\ 
 
 & &others&news&social & others&news&social &  others&news&social \\
 
\hline
 
 
 
\multirow{4}{*}{Vital} &cano                 &82.2& 65.6& 70.9& 90.9&  80.1& 76.8&   8.1&  6.3&  30.5\\
 
&cano part & 90.4& 80.6& 83.1& 100.0& 98.7& 90.9&   8.1&  6.3&  30.5\\
 
&all  & 94.8& 85.4& 83.1& 96.4&  95.9& 85.2&   81.1& 42.2& 68.8\\
 
&all part &100& 99.2& 95.9& 100.0&  99.2& 96.0&   100&  99.3& 94.9\\
 
\hline
 
	                 
 
\multirow{4}{*}{Relevant} &cano & 84.2& 53.4& 55.6& 88.4& 75.6& 63.2& 10.6& 2.2& 6.0\\
 
&cano part &94.7& 68.5& 67.8& 99.6& 97.3& 77.3& 10.6& 2.2& 6.0\\
 
&all & 95.8& 90.1& 72.9& 97.6& 95.1& 73.1& 65.2& 78.4& 72.0\\
 
&all part &98.8& 95.5& 83.7& 99.7& 98.0& 84.1& 83.3& 89.7& 81.0\\
 
	                 
 
	                 \hline
 
\multirow{4}{*}{total} 	&cano    &   81.1& 56.5& 58.2& 87.7& 76.4& 65.7& 9.8& 3.6& 13.5\\
 
&cano part &92.0& 72.0& 70.6& 99.6& 97.7& 80.1& 9.8& 3.6& 13.5\\
 
&all & 94.8& 87.1& 75.2& 96.8& 95.3& 75.8& 73.5& 65.4& 71.1\\
 
&all part & 99.2& 96.8& 86.6& 99.8& 98.4& 86.8& 92.4& 92.7& 84.9\\
 
	                 
 
\hline
 
\end{tabular}
 
\end{center}
 
\label{tab:source-delta}
 
\end{table*}
 
    
 
 
The break down of the raw corpus by document source category is presented in Table
 
\ref{tab:source-delta}.  
 
%The break down of the raw corpus by document source category is presented in Table
 
%\ref{tab:source-delta}.  
 
 
 
 
 
 
 
 
 
 \subsection{ Relevance Rating: vital and relevant}
 
 
 
When comparing recall for vital and relevant, we observe that
 
canonical names are more effective for vital than for relevant
 
entities, in particular for the Wikipedia entities. 
 
%For example, the recall for news is 80.1 and for social is 76, while the corresponding recall in relevant is 75.6 and 63.2 respectively.
 
We conclude that the most relevant documents mention the
 
entities by their common name variants.
 
%  \subsection{Difference by document categories}
 
%  
 
 
 
%  Generally, there is greater variation in relevant rank than in vital. This is specially true in most of the Delta's for Wikipedia. This  maybe be explained by news items referring to  vital documents by a some standard name than documents that are relevant. Twitter entities show greater deltas than Wikipedia entities in both vital and relevant. The greater variation can be explained by the fact that the canonical name of Twitter entities retrieves very few documents. The deltas that involve canonical names of Twitter entities, thus, show greater deltas.  
 
%  
 
 
% If we look in recall performances, In Wikipedia entities, the order seems to be others, news and social. This means that others achieve a higher recall than news than social.  However, in Twitter entities, it does not show such a strict pattern. In all, entities also, we also see almost the same pattern of other, news and social. 
 
 
 
 
  
 
\subsection{Recall across document categories: others, news and social}
 
The recall for Wikipedia entities in Table \ref{tab:name} ranged from
 
61.8\% (canonicals) to 77.9\% (name-variants).  Table
 
\ref{tab:source-delta} shows how recall is distributed across document
 
categories. For Wikipedia entities, across all entity profiles, others
 
have a higher recall followed by news, and then by social.  While the
 
recall for news ranges from 76.4\% to 98.4\%, the recall for social
 
documents ranges from 65.7\% to 86.8\%. In Twitter entities, however,
 
the pattern is different. In canonicals (and their partials), social
 
documents achieve higher recall than news.
 
%This indicates that social documents refer to Twitter entities by their canonical names (user names) more than news do. In name- variant partial, news achieve better results than social. The difference in recall between canonicals and name-variants show that news do not refer to Twitter entities by their user names, they refer to them by their display names.
 
Overall, across all entities types and all entity profiles, documents
 
in the others category achieve a higher recall than news, and news documents, in turn, achieve higher recall than social documents. 
 
 
% This suggests that social documents are the hardest  to retrieve.  This  makes sense since social posts such as tweets and blogs are short and are more likely to point to other resources, or use short informal names.
 
 
 
%%NOTE TABLE REMOVED:\\\\
 
%
 
%We computed four percentage increases in recall (deltas)  between the
 
%different entity profiles (Table \ref{tab:source-delta2}). The first
 
%delta is the recall percentage between canonical partial  and
 
%canonical. The second  is  between name= variant and canonical. The
 
%third is the difference between name-variant partial  and canonical
 
%partial and the fourth between name-variant partial and
 
%name-variant. we believe these four deltas offer a clear meaning. The
 
%delta between name-variant and canonical means the percentage of
 
%documents that the new name variants retrieve, but the canonical name
 
%does not. Similarly, the delta between  name-variant partial and
 
%partial canonical-partial means the percentage of document-entity
 
%pairs that can be gained by the partial names of the name variants. 
 
% The  biggest delta  observed is in Twitter entities between partials
 
% of all name variants and partials of canonicals (93\%). delta. Both
 
% of them are for news category.  For Wikipedia entities, the highest
 
% delta observed is 19.5\% in cano\_part - cano followed by 17.5\% in
 
% all\_part in relevant. 
 
  
 
  \subsection{Entity Types: Wikipedia and Twitter}
 
Table \ref{tab:name} summarizes the differences between Wikipedia and
 
Twitter entities.  Wikipedia entities' canonical representation
 
achieves a recall of 70\%, while canonical partial achieves a recall of 86.1\%. This is an
 
increase in recall of 16.1\%. By contrast, the increase in recall of
 
name-variant partial over name-variant is 8.3\%.
 
%This high increase in recall when moving from canonical names to their
 
%partial names, in comparison to the lower increase when moving from
 
%all name variants to their partial names can be explained by
 
%saturation: documents have already been extracted by the different
 
%name variants and thus using their partial names do not bring in many
 
%new relevant documents.
 
For Wikipedia entities, canonical
 
partial achieves better recall than name-variant in both the cleansed and
 
the raw corpus.  %In the raw extraction, the difference is about 3.7.
 
In Twitter entities, recall of canonical matching is very low.%
 
\footnote{Canonical
 
and canonical partial are the same for Twitter entities because they
 
are one word strings. For example in https://twitter.com/roryscovel,
 
``roryscovel`` is the canonical name and its partial is identical.}
 
%The low recall is because the canonical names of Twitter entities are
 
%not really names; they are usually arbitrarily created user names. It
 
%shows that  documents  refer to them by their display names, rarely
 
%by their user name, which is reflected in the name-variant recall
 
%(67.9\%). The use of name-variant partial increases the recall to
 
%88.2\%.
 
 
 
 
The tables in \ref{tab:name} and \ref{tab:source-delta} show a higher recall
 
for Wikipedia than for Twitter entities. Generally, at both
 
aggregate and document category levels, we observe that recall
 
increases as we move from canonicals to canonical partial, to
 
name-variant, and to name-variant partial. The only case where this
 
does not hold is in the transition from Wikipedia's canonical partial
 
to name-variant. At the aggregate level (as can be inferred from Table
0 comments (0 inline, 0 general)