Changeset - 2594949a76bb
[Not reviewed]
0 1 0
Arjen de Vries (arjen) - 11 years ago 2014-06-12 03:02:11
arjen.de.vries@cwi.nl
trying...
1 file changed with 5 insertions and 1 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -358,49 +358,53 @@ as part of the pipeline needs that delicate balance between retrieving
 
relavant documents and irrrelevant documensts. Bcause of this,
 
filtering in this case can only be studied by binding it to the later
 
stages of the entity-centric pipeline. This bond influnces how we do
 
evaluation.
 

	
 
To achieve this, we use recall percentages in the filtering stage for
 
the different choices of entity profiles. However, we use the overall
 
performance to select the best entity profiles.To generate the overall
 
pipeline performance we use the official TREC KBA evaluation metric
 
and scripts \cite{frank2013stream} to report max-F, the maximum
 
F-score obtained over all relevance cut-offs.
 

	
 
\section{Literature Review}
 
There has been a great deal of interest  as of late on entity-based filtering and ranking. One manifestation of that is the introduction of TREC KBA in 2012. Following that, there have been a number of research works done on the topic \cite{frank2012building, ceccarelli2013learning, taneva2013gem, wang2013bit, balog2013multi}.  These works are based on KBA 2012 task and dataset  and they address the whole problem of entity filtering and ranking.  TREC KBA continued in 2013, but the task underwent some changes. The main change between  the 2012 and 2013 are in the number of entities, the type of entities, the corpus and the relevance rankings.
 
 
The number of entities increased from 29 to 141, and it included 20 Twitter entities. The TREC KBA 2012 corpus is 1.9TB after xz-compression and has  400M documents. By contrast, the KBA 2013 corpus is 6.45 after XZ-compression and GPG encryption. A version with all-non English documented removed  is 4.5 TB and consists of 1 Billion documents. The 2013 corpus subsumed the 2012 corpus and added others from spinn3r, namely main-stream news, forum, arxiv, classified, reviews and meme-tracker.  A more important difference is, however, a change in the definitions of relevance ratings vital and relevant. While in KBA 2012, a document was judged vital if it has citation-worthy content for a given entity, in 2013 it must have the freshliness, that is the content must trigger an editing of the given entity's KB entry. 
 
 
While the tasks of 2012 and 2013 are fundamentally the same, the approaches  varied due  to the size of the corpus. In 2013, all participants used filtering to reduce the size of the big corpus.   They used different ways of filtering: many of them used two or more of different name variants from DBpedia such as labels, names, redirects, birth names, alias, nicknames, same-as and alternative names \cite{wang2013bit,dietzumass,liu2013related, zhangpris}.  Although most of the participants used DBpedia name variants none of them used all the name variants.  A few other participants used bold words in the first paragraph of the Wikipedia entity's profiles and anchor texts from other Wikipedia pages  \cite{bouvierfiltering, niauniversity}. One participant used Boolean \emph{and} built from the tokens of the canonical names \cite{illiotrec2013}.  
 
 
All of the studies used filtering as their first step to generate a smaller set of documents. And many systems suffered from poor recall and their system performances were highly affected \cite{frank2012building}. Although  systems  used different entity profiles to filter the stream, and achieved different performance levels, there is no study on and the factors and choices that affect the filtering step itself. Of course filtering has been extensively examined in TREC Filtering \cite{robertson2002trec}. However, those studies were isolated in the sense that they were intended to optimize recall. What we have here is a different scenario. Documents have relevance rating. Thus we want to study filtering in connection to  relevance to the entities and thus can be done by coupling filtering to the later stages of the pipeline. This is new to the best of our knowledge and the TREC KBA problem setting and data-sets offer a good opportunity to examine this aspect of filtering. 
 
 
Moreover, there has not been a chance to study at this scale and/or a study into what type of documents defy filtering and why? In this paper, we conduct a manual examination of the documents that are missing and classify them into different categories. We also estimate the general upper bound of recall using the different entities profiles and choose the best profile that results in an increased over all performance as measured by F-measure. 
 
 
\section{Method}
 
We work with the docuemnts have relavance assessments. For this purpose, we extracted those docuemnts from the big corpus.    We experiment with all KB entities.  For each KB entity, we extract different name variants from DBpedia and Twitter. 
 
All analyses in this paper are carried out on the documents that have
 
relevance assessments associated to them. For this purpose, we
 
extracted those documents from the big corpus. We experiment with all
 
KB entities. For each KB entity, we extract different name variants
 
from DBpedia and Twitter.
 
\
 
 
\subsection{Entity Profiling}
 
We build profiles for the KB entities of interest. We have two types: Twitter and Wikipedia. Both Entities are selected, on purpose, to be sparse, less-documented.  For the Twitter entities, we visit their respective Twitter pages  and  manually fetch their display names. For the Wikipedia entities, we fetch different name variants from DBpedia, namely  name, label, birth name, alternative names, redirects, nickname, or alias.  The extraction results are in Table \ref{tab:sources}.
 
\begin{table}
 
\caption{Number of different DBpedia name variants}
 
\begin{center}
 
 
 \begin{tabular}{l*{4}{c}l}
 
 Name variant& No. of strings  \\
 
\hline
 
 Name  &82\\
 
 Label   &121\\
 
Redirect  &49 \\
 
 Birth Name &6\\
 
 Nickname & 1&\\
 
 Alias &1 \\
 
 Alternative Names &4\\
 
 
\hline
 
\end{tabular}
 
\end{center}
 
\label{tab:sources}
 
\end{table}
0 comments (0 inline, 0 general)