Changeset - 2d75f50f60d9
[Not reviewed]
0 1 0
Arjen de Vries (arjen) - 11 years ago 2014-06-12 02:56:00
arjen.de.vries@cwi.nl
"done" with section 2 up to literature review
1 file changed with 22 insertions and 23 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -193,51 +193,51 @@ occur (news, blogs, or tweets) cause further variations.
 
In such a situation, it becomes hard to identify the factors that
 
result in improved performance. There is  a lack of insight across
 
different approaches. This makes  it hard to know whether the
 
improvement in performance of a particular approach is due to
 
preprocessing, filtering, classification, scoring  or any of the
 
sub-components of the pipeline.
 
 
 
In this paper, we therefore fix the subsequent steps of the pipeline,
 
and zoom in on \emph{only} the filtering step; and conduct an in-depth analysis of its
 
main components.  In particular, we study the effect of cleansing,
 
entity profiling, type of entity filtered for (Wikipedia or Twitter), and
 
document category (social, news, etc) on the filtering components'
 
performance. The main contribution of the
 
paper are an in-depth analysis of the factors that affect entity-based
 
stream filtering, identifying optimal entity profiles without
 
compromising precision, describing and classifying relevant documents
 
that are not amenable to filtering , and estimating the upper-bound
 
of recall on entity-based filtering.
 

	
 
The rest of the paper is is organized as follows: 
 

	
 
\textbf{TODO!!}
 

	
 
 \section{Data Description}
 
We base this analysis on the TREC-KBA 2013 dataset
 
\footnote{http://http://trec-kba.org/trec-kba-2013.shtml}. This dataset
 
consists of three main parts: a time-stamped stream corpus, a set of
 
We base this analysis on the TREC-KBA 2013 dataset%
 
\footnote{http://http://trec-kba.org/trec-kba-2013.shtml}
 
that consists of three main parts: a time-stamped stream corpus, a set of
 
KB entities to be curated, and a set of relevance judgments. A CCR
 
system now has to identify for each KB entity which documents in the
 
stream corpus are to be considered by the human curator.
 

	
 
\subsection{Stream corpus} The stream corpus comes in two versions:
 
raw and cleaned. The raw and cleansed versions are 6.45TB and 4.5TB
 
respectively,  after xz-compression and GPG encryption. The raw data
 
is a  dump of  raw HTML pages. The cleansed version is the raw data
 
after its HTML tags are stripped off and only English documents
 
identified with Chromium Compact Language Detector
 
\footnote{https://code.google.com/p/chromium-compact-language-detector/}
 
are included.  The stream corpus is organized in hourly folders each
 
of which contains many  chunk files. Each chunk file contains between
 
hundreds and hundreds of thousands of serialized  thrift objects. One
 
thrift object is one document. A document could be a blog article, a
 
news article, or a social media post (including tweet).  The stream
 
corpus comes from three sources: TREC KBA 2012 (social, news and
 
linking) \footnote{http://trec-kba.org/kba-stream-corpus-2012.shtml},
 
arxiv\footnote{http://arxiv.org/}, and
 
spinn3r\footnote{http://spinn3r.com/}.
 
Table \ref{tab:streams} shows the sources, the number of hourly
 
directories, and the number of chunk files.
 
\begin{table}
 
\caption{Retrieved documents to different sources }
 
@@ -265,106 +265,105 @@ directories, and the number of chunk files.
 
 
\subsection{KB entities}
 
 
 The KB entities consist of 20 Twitter entities and 121 Wikipedia entities. The selected entities are, on purpose, sparse. The entities consist of 71 people, 1 organization, and 24 facilities.  
 
 
\subsection{Relevance judgments}
 
 
TREC-KBA provided relevance judgments for training and
 
testing. Relevance judgments are given as a document-entity
 
pairs. Documents with citation-worthy content to a given entity are
 
annotated  as \emph{vital},  while documents with tangentially
 
relevant content, or documents that lack freshliness o  with content
 
that can be useful for initial KB-dossier are annotated as
 
\emph{relevant}. Documents with no relevant content are labeled
 
\emph{neutral} and spam is labeled as \emph{garbage}. 
 
%The inter-annotator agreement on vital in 2012 was 70\% while in 2013 it
 
%is 76\%. This is due to the more refined definition of vital and the
 
%distinction made between vital and relevant.
 

	
 
\subsection{Breakdown of results by document source category}
 
 
%The results of the different entity profiles on the raw corpus are
 
%broken down by source categories and relevance rank% (vital, or
 
%relevant).  
 
 
In total, there are 24162 vital or relevant unique entity-document
 
pairs. 9521 of them are vital  and  17424 are relevant. These
 
documents  are categorized into 8 source categories: 0.98\% arxiv(a),
 
0.034\% classified(c), 0.34\% forum(f), 5.65\% linking(l), 11.53\%
 
mainstream-news(m-n), 18.40\% news(n), 12.93\% social(s) and 50.2\%
 
weblog(w). We have regrouped these source categories into three groups
 
``news'', ``social'', and ``other'', for two reasons: 1) some groups
 
In total, the dataset contains 24162 unique entity-document
 
pairs, vital or relevant; 9521 of these have been labelled as vital,
 
and the remaining 17424 as relevant.
 
All documents are categorized into 8 source categories: 0.98\%
 
arxiv(a), 0.034\% classified(c), 0.34\% forum(f), 5.65\% linking(l),
 
11.53\% mainstream-news(m-n), 18.40\% news(n), 12.93\% social(s) and
 
50.2\% weblog(w). We have regrouped these source categories into three
 
groups ``news'', ``social'', and ``other'', for two reasons: 1) some groups
 
are very similar to each other. Mainstream-news and news are
 
similar. The reason they exist separately, in the first place,  is
 
because they were collected from two different sources, by different
 
groups and at different times. we call them news from now on.  The
 
same is true with weblog and social, and we call them social from now
 
on.   2) some groups have so small number of annotations that treating
 
them independently does not make much sense. Majority of vital or
 
relevant annotations are social (social and weblog) (63.13\%). News
 
(mainstream +news) make up 30\%. Thus, news and social make up about
 
93\% of all annotations.  The rest make up about 7\% and are all
 
grouped as others.
 

	
 
 
 \section{Stream Filtering}
 
 
 
 The TREC Filtering track defines filtering as a ``system that sifts
 
 through stream of incoming information to find documents that are
 
 relevant to a set of user needs represented by profiles''
 
 \cite{robertson2002trec}. Its information needs are long-term and are
 
 reprsented persistent profiles  unlike the traditional search system
 
 represented by persistent profiles, unlike the traditional search system
 
 whose adhoc information need is represented by a search
 
 query. Adaptive Filtering, one task of the filtering track,  starts
 
 with  a persistent user profile and a very small number of positive
 
 examples. A filtering system can improve its user profiles with a
 
 feedback obtained from interaction with users, and thereby improve
 
 its performance. The  filtering stage of entity-based stream
 
 filtering and ranking can be likened to the adaptive filtering task
 
 of the filtering track. The persistent information needs are the KB
 
 entities, and the relevance judgments are the small number of postive
 
 examples.
 

	
 
 
 
 Stream filtering: given a stream of documents of news items, blogs
 
 and social media on one hand and KB entities  on the other, filter
 
 the stream for  potentially relevant documents  such that the
 
 relevance classifier(ranker) achieves as maximum performance as
 
Stream filtering is then the task to, given a stream of documents of news items, blogs
 
 and social media on one hand and a set of KB entities on the other,
 
 to filter the stream for  potentially relevant documents  such that
 
 the relevance classifier(ranker) achieves as maximum performance as
 
 possible.  Specifically, we conduct in-depth analysis on the choices
 
 and factors affecting the cleansing step, the entity-profile
 
 construction, the document category of the stream items, and the type
 
 of entities (Wikipedia or Twitter) , and finally their impact
 
 overall performance of the pipeline. Finally, we conduct manual
 
 examination of the vital documents that defy filtering. We strive to
 
 answer the following research questions:
 
 of entities (Wikipedia or Twitter) , and finally their impact overall
 
 performance of the pipeline. Finally, we conduct manual examination
 
 of the vital documents that defy filtering. We strive to answer the
 
 following research questions:
 
\begin{enumerate}
 
  \item Does cleansing affect filtering and subsequent performance
 
  \item What is the most effective way of entity profile representation
 
  \item Is filtering different for Wikipedia and Twitter entities?
 
  \item Are some type of documents easily filterable and others not?
 
  \item Does a gain in recall at filtering step translate to a gain in F-measure at the end of the pipeline?
 
  \item What are the vital(relevant) documents that are not retrievable by a system?
 
  \item What characterizes the vital (and relevant) documents that are
 
    missed in the filtering step?
 
\end{enumerate}
 

	
 
The TREC filtering and the filtering as part of the entity-centric
 
stream filtering and ranking pipepline have different purposes. The
 
TREC filtering track's goal is the binary classification of documents:
 
for each incoming docuemnt, it decides whether the incoming document
 
is relevant or not for a given profile. The docuemnts are either
 
relevant or not. In our case, the documents have relevance ranking and
 
the goal of the filtering stage is to filter as many potentially
 
relevant documents as possible, but less  irrelevant documents as
 
possible not to obfuscate the later stages of the piepline.  Filtering
 
as part of the pipeline needs that delicate balance between retrieving
 
relavant documents and irrrelevant documensts. Bcause of this,
 
filtering in this case can only be studied by binding it to the later
 
stages of the entity-centric pipeline. This bond influnces how we do
 
evaluation.
 

	
 
To achieve this, we use recall percentages in the filtering stage for
 
the different choices of entity profiles. However, we use the overall
 
performance to select the best entity profiles.To generate the overall
 
pipeline performance we use the official TREC KBA evaluation metric
 
and scripts \cite{frank2013stream} to report max-F, the maximum
 
F-score obtained over all relevance cut-offs.
 

	
0 comments (0 inline, 0 general)