Changeset - 60d8e26cf4e5
[Not reviewed]
0 1 0
Arjen de Vries (arjen) - 11 years ago 2014-06-12 04:59:56
arjen.de.vries@cwi.nl
analysis improvements
1 file changed with 66 insertions and 24 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -847,243 +847,285 @@ Finally,  we select  the 5 most frequent n-grams for each context.
 
\end{table*}
 
 
 
 
 
Table \ref{tab:class-vital} shows the recall performance for vitally judged documents.  On Wikipedia entities, except in the canonical profile, the cleansed version achieves  better results than the raw version.  However, on Twitter entities, the raw corpus achieves  better  in all entity profiles (except  in name-variant partial).  At an aggregate (both Wikipedia and Twitter) level, we see that in three profiles, cleansed achieves better.  Only in canonical partial, does raw perform better. Overall cleansed achieves better results than raw.  This result is interesting because we saw in previous sections that the raw corpus achieves  higher recall than cleansed. In the case name-variant partial, for example, 10\% more relevant documents are retrieved in the raw corpus. The gain in recall in raw corpus does not translate into a gain in F\_measure. In fact, in most cases F\_measure decreased. % One explanation for this is that it brings in many false positives from, among related links, adverts, etc.  
 
For Wikipedia entities,  canonical partial  achieves the highest performance. For Twitter, name-variant partial achieves  better results.
 
 
In vital-relevant category (Table \ref{tab:class-vital-relevant}), the performances are different.  Except in canonical partial,  raw achieves better results in all cases. For Twitter entities, the raw corpus achieves better results in all cases.  In terms of  entity profiles, Wikipedia's canonical partial  achieves  the best F-score. For Twitter, as before, canonical partial. The raw corpus has more effect on relevant documents and Twitter entities.  
 
 
%The fact that canonical partial names achieve better results is interesting.  We know that partial names were used as a baseline in TREC KBA 2012, but no one of the KBA participants actually used partial names for filtering.
 
 
 
   
 
%    
 
   
 
   
 
%    
 
%    \begin{table*}
 
% \caption{Breakdown of missing documents by sources for cleansed, raw and cleansed-and-raw}
 
% \begin{center}\begin{tabular}{l*{9}r}
 
%   &others&news&social \\
 
% \hline
 
% 
 
% 			&missing from raw only &   0 &0   &217 \\
 
% 			&missing from cleansed only   &430   &1321     &1341 \\
 
% 
 
%                          &missing from both    &19 &317     &2196 \\
 
%                         
 
%                          
 
% 
 
% \hline
 
% \end{tabular}
 
% \end{center}
 
% \label{tab:miss-category}
 
% \end{table*}
 
 
 
 
%    To gain more insight, I sampled for each 35 entities, one document-entity pair and looked into the contents. The results are in \ref{tab:miss from both}
 
%    
 
%    \begin{table*}
 
% \caption{Missing documents and their mentions }
 
% \begin{center}
 
% 
 
%  \begin{tabular}{l*{4}{l}l}
 
%  &entity&mentioned by &remark \\
 
% \hline
 
%  Jeremy McKinnon  & Jeremy McKinnon& social, mentioned in read more link\\
 
% Blair Thoreson   & & social, There is no mention by name, the article talks about a subject that is political (credit rating), not apparent to me\\
 
%   Lewis and Clark Landing&&Normally, maha music festival does not mention ,but it was held there \\
 
% Cementos Lima &&It appears a mistake to label it vital. the article talks about insurance and centos lima is a cement company.entity-deleted from wiki\\
 
% Corn Belt Power Cooperative & &No content at all\\
 
% Marion Technical Institute&&the text could be of any place. talks about a place whose name is not mentioned. 
 
%  roryscovel & &Talks about a video hinting that he might have seen in the venue\\
 
% Jim Poolman && talks of party convention, of which he is member  politician\\
 
% Atacocha && No mention by name The article talks about waste from mining and Anacocha is a mining company.\\
 
% Joey Mantia & & a mention of a another speeedskater\\
 
% Derrick Alston&&Text swedish, no mention.\\
 
% Paul Johnsgard&& not immediately clear why \\
 
% GandBcoffee&& not immediately visible why\\
 
% Bob Bert && talks about a related media and entertainment\\
 
% FrankandOak&& an article that talks about a the realease of the most innovative companies of which FrankandOak is one. \\
 
% KentGuinn4Mayor && a theft in a constituency where KentGuinn4Mayor is vying.\\
 
% Hjemkomst Center && event announcement without mentioning where. it takes a a knowledge of \\
 
% BlossomCoffee && No content\\
 
% Scotiabank Per\%25C3\%25BA && no content\\
 
% Drew Wrigley && politics and talk of oilof his state\\
 
% Joshua Zetumer && mentioned by his film\\
 
% Théo Mercier && No content\\
 
% Fargo Air Museum && No idea why\\
 
% Stevens Cooperative School && no content\\
 
% Joshua Boschee && No content\\
 
% Paul Marquart &&  No idea why\\
 
% Haven Denney && article on skating competition\\
 
% Red River Zoo && animal show in the zoo, not indicated by name\\
 
% RonFunches && talsk about commedy, but not clear whyit is central\\
 
% DeAnne Smith && No mention, talks related and there are links\\
 
% Richard Edlund && talks an ward ceemony in his field \\
 
% Jennifer Baumgardner && no idea why\\
 
% Jeff Tamarkin && not clear why\\
 
% Jasper Schneider &&no mention, talks about rural development of which he is a director \\
 
% urbren00 && No content\\
 
% \hline
 
% \end{tabular}
 
% \end{center}
 
% \label{tab:miss from both}
 
% \end{table*}
 
 
 
 
 
   
 
  
 
\section{Analysis and Discussion}\label{sec:analysis}
 
 
 
We conducted experiments to study  the impacts on recall of 
 
We conducted experiments to study the impacts on recall of 
 
different components of the filtering stage of entity-based filtering and ranking pipeline. Specifically 
 
we conducted experiments to study the impacts of cleansing, 
 
entity profiles, relevance ratings, categories of documents, entity profiles. We also measured  impact of the different factors and choices  on later stages of the pipeline. 
 
 
Experimental results show that cleansing can remove entire or parts of the content of documents making them difficult to retrieve. These documents can, otherwise, be retrieved from the raw version. The use of the raw corpus brings in documents that can not be retrieved from the cleansed corpus. This is true for all entity profiles and for all entity types. The  recall difference between the cleansed and raw ranges from  6.8\% t 26.2\%. These increases, in actual document-entity pairs,  is in thousands. We believe this is a substantial increase. However, the recall increases do not always translate to improved F-score in overall performance.  In the vital relevance ranking for both Wikipedia and aggregate entities, the cleansed version performs better than the raw version.  In Twitter entities, the raw corpus achieves better except in the case of all name-variant, though the difference is negligible.  However, for vital-relevant, the raw corpus performs  better across all entity profiles and entity types 
 
except in partial canonical names of Wikipedia entities. 
 
 
The use of different profiles also shows a big difference in recall. Except in the case of Wikipedia where the use of canonical partial achieves better than name-variant, there is a steady increase in recall from canonical to  canonical partial, to name-variant, and to name-variant partial. This pattern is also observed across the document categories.  However, here too, the relationship between   the gain in recall as we move from less richer profile to a more richer profile and overall performance as measured by F-score  is not linear. 
 
 
 
%%%%% MOVED FROM LATER ON - CHECK FLOW
 
 
There is a trade-off between using a richer entity-profile and retrieval of irrelevant documents. The richer the profile, the more relevant documents it retrieves, but also the more irrelevant documents. To put it into perspective, lets compare the number of documents that are retrieved with  canonical partial and with name-variant partial. Using the raw corpus, the former retrieves a total of 2547487 documents and achieves a recall of 72.2\%. By contrast, the later retrieves a total of 4735318 documents and achieves a recall of 90.2\%. The total number of documents extracted increases by 85.9\% for a recall gain of 18\%. The rest of the documents, that is 67.9\%, are newly introduced irrelevant documents. 
 
entity profiles, relevance ratings, categories of documents, entity
 
profiles. We also measured  impact of the different factors and
 
choices  on later stages of the pipeline of our own system. 
 
 
Experimental results show that cleansing can remove entire or parts of
 
the content of documents making them difficult to retrieve. These
 
documents can, otherwise, be retrieved from the raw version. The use
 
of the raw corpus brings in documents that can not be retrieved from
 
the cleansed corpus. This is true for all entity profiles and for all
 
entity types. The  recall difference between the cleansed and raw
 
ranges from  6.8\% t 26.2\%. These increases, in actual
 
document-entity pairs,  is in thousands. We believe this is a
 
substantial increase. However, the recall increases do not always
 
translate to improved F-score in overall performance.  In the vital
 
relevance ranking for both Wikipedia and aggregate entities, the
 
cleansed version performs better than the raw version.  In Twitter
 
entities, the raw corpus achieves better except in the case of all
 
name-variant, though the difference is negligible.  However, for
 
vital-relevant, the raw corpus performs  better across all entity
 
profiles and entity types except in partial canonical names of
 
Wikipedia entities.
 

	
 
The use of different profiles also shows a big difference in
 
recall. While in Wikipedia the use of canonical
 
partial achieves better than name-variant, there is a steady increase
 
in recall from canonical to canonical partial, to name-variant, and
 
to name-variant partial. This pattern is also observed across the
 
document categories.  However, here too, the relationship between
 
the gain in recall as we move from less richer profile to a more
 
richer profile and overall performance as measured by F-score  is not
 
linear.
 

	
 
 
%%%%%%%%%%%%
 
 
 
In vital ranking, across all entity profiles and types of corpus, Wikipedia's canonical partial  achieves better performance than any other Wikipedia entity profiles. In vital-relevant documents too, Wikipedia's canonical partial achieves the best result. In the raw corpus, it achieves a little less than name-variant partial. For Twitter entities, the name-variant partial profile achieves the highest F-score across all entity profiles and types of corpus.  
 
In vital ranking, across all entity profiles and types of corpus,
 
Wikipedia's canonical partial  achieves better performance than any
 
other Wikipedia entity profiles. In vital-relevant documents too,
 
Wikipedia's canonical partial achieves the best result. In the raw
 
corpus, it achieves a little less than name-variant partial. For
 
Twitter entities, the name-variant partial profile achieves the
 
highest F-score across all entity profiles and types of corpus.
 
 
 
Cleansing impacts Twitter
 
entities and relevant documents.  This  is validated by the
 
observation that recall  gains in Twitter entities and the relevant
 
categories in the raw corpus also translate into overall performance
 
gains. This observation implies that cleansing removes relevant and
 
social documents than it does vital and news. That it removes relevant
 
documents more than vital can be explained by the fact that cleansing
 
removes the related links and adverts which may contain a mention of
 
the entities. One example we saw was the the cleansing removed an
 
image with a text of an entity name which was actually relevant. And
 
that it removes social documents can be explained by the fact that
 
most of the missing of the missing  docuemnts from cleansed are
 
social. And all the docuemnts that are missing from raw corpus
 
social. So in both cases socuial seem to suffer from text
 
social. So in both cases social seem to suffer from text
 
transformation and cleasing processes. 
 
 
%%%% NEEDS WORK:
 
 
Taking both performance (recall at filtering and overall F-score
 
during evaluation) into account, there is a clear trade-off between using a richer entity-profile and retrieval of irrelevant documents. The richer the profile, the more relevant documents it retrieves, but also the more irrelevant documents. To put it into perspective, lets compare the number of documents that are retrieved with  canonical partial and with name-variant partial. Using the raw corpus, the former retrieves a total of 2547487 documents and achieves a recall of 72.2\%. By contrast, the later retrieves a total of 4735318 documents and achieves a recall of 90.2\%. The total number of documents extracted increases by 85.9\% for a recall gain of 18\%. The rest of the documents, that is 67.9\%, are newly introduced irrelevant documents. 
 
 
Wikipedia's canonical partial is the best entity profile for Wikipedia
 
entities. This is interesting  to see that the retrieval of of
 
during evaluation) into account, there is a clear trade-off between
 
using a richer entity-profile and retrieval of irrelevant
 
documents. The richer the profile, the more relevant documents it
 
retrieves, but also the more irrelevant documents. To put it into
 
perspective, lets compare the number of documents that are retrieved
 
with  canonical partial and with name-variant partial. Using the raw
 
corpus, the former retrieves a total of 2547487 documents and achieves
 
a recall of 72.2\%. By contrast, the later retrieves a total of
 
4735318 documents and achieves a recall of 90.2\%. The total number of
 
documents extracted increases by 85.9\% for a recall gain of 18\%. The
 
rest of the documents, that is 67.9\%, are newly introduced irrelevant
 
documents.
 

	
 
Perhaps surprising, Wikipedia's canonical partial is the best entity profile for Wikipedia
 
entities. Here, the retrieval of
 
thousands vital-relevant document-entity pairs by name-variant partial
 
does not translate to an increase in over all performance. It is even
 
more interesting since canonical partial was not considered as
 
contending profile for stream filtering by any of participant to the
 
best of our knowledge. With this understanding, there  is actually no
 
need to go and fetch different names variants from DBpedia, a saving
 
of time and computational resources.
 
does not materialize into an increase in over all performance. Notice
 
that none of the participants in TREC KBA considered canonical partial
 
as a viable strategy though. We conclude that, at least for our
 
system, the remainder of the pipeline needs a different approach to
 
handle the correct scoring of the additional documents -- that are
 
necessary if we do not want to accept a low recall of the filtering
 
step.
 
%With this understanding, there  is actually no
 
%need to go and fetch different names variants from DBpedia, a saving
 
%of time and computational resources.
 
 
 
%%%%%%%%%%%%
 
 
 
 
 
The deltas between entity profiles, relevance ratings, and document
 
categories reveal four differences between Wikipedia and Twitter
 
entities. 1) For Wikipedia entities, the difference between canonical
 
partial and canonical is higher(16.1\%) than between name-variant
 
partial and  name-variant(8.3\%).  This can be explained by
 
saturation. This is to mean that documents have already been extracted
 
by  name-variants and thus using their partials does not bring in many
 
new relevant documents.  2) Twitter entities are mentioned by
 
name-variant or name-variant partial and that is seen in the high
 
recall achieved  compared to the low recall achieved by canonical(or
 
their partial). This indicates that documents (specially news and
 
others) almost never use user names to refer to Twitter
 
entities. Name-variant partials are the best entity profiles for
 
Twitter entities. 3) However, comparatively speaking, social documents
 
refer to Twitter entities by their user names than news and others
 
suggesting a difference in adherence to standard in names and naming. 
 
4) Wikipedia entities achieve higher recall and higher overall performance. 
 

	
 
The high recall and subsequent higher overall performance of Wikipedia
 
entities can  be due to two reasons. 1) Wikipedia entities are
 
relatively well described than Twitter entities. The fact that we can
 
retrieve different name variants from DBpedia is a measure of
 
relatively rich description. Rich description plays a role in both
 
filtering and computation of features such as similarity measures in
 
later stages of the pipeline.   By contrast, we have only two names
 
for Twitter entities: their user names and their display names which
 
we collect from their Twitter pages. 2) There is not DBpedia-like
 
resource for Twitter entities from which alternative names cane be
 
collected.
 
 
In the experimental results, we also observed that recall scores in
 
the vital category are higher than in the relevant category. This
 
observation  confirms one commonly held assumption:(frequency) mention
 
is related to relevance.  this is the assumption why term frequency is
 
used an indicator of document relevance in many information retrieval
 
systems. The more  a document mentions an entity explicitly by name,
 
the more likely the document is vital to the entity.
 

	
 
Across document categories, we observe a pattern in recall of
 
documents from the ``others'' category, followed by ``news'', and then
 
by ``social''. The social documents relevant to an entity are the
 
hardest to retrieve. This can be explained by the fact that social
 
documents (tweets and  blogs) are more likely to point to a resource
 
where the entity is mentioned, mention the entities with some short
 
abbreviation, or talk without mentioning the entities, but with some
 
context in mind. By contrast news documents mention the entities they
 
talk about using the common name variants more than social documents
 
do. However, the greater difference in percentage recall between the
 
different entity profiles in the news category indicates news refer to
 
a given entity with different names, rather than by one standard
 
name. By contrast others show least variation in referring to
 
news. Social documents falls in between the two.  The deltas, for
 
Wikipedia entities, between canonical partials and canonicals,  and
 
name-variants and canonicals are high, an indication that canonical
 
partials
 
and name-variants bring in new relevant documents that can not be
 
retrieved by canonicals. The rest of the two deltas are very small,
 
suggesting that partial names of name variants do not bring in new
 
relevant documents.
 
 
% Was: \section{Unfilterable documents}
 
\section{Missing vital-relevant documents \label{miss}}
 
 
 The use of name-variant partial for filtering is an aggressive
 
 attempt to retrieve as many relevant documents as possible at the
 
 cost of retrieving irrelevant documents. However, we still miss about
 
 2363(10\%) of the vital-relevant documents.  Why are these documents
 
 never retrieved? If they are not mentioned by partial names of name
 
 variants, what are they mentioned by? Table \ref{tab:miss} summarizes
 
 the number of documents that we miss with respect to cleansed and raw
 
 corpus.  The upper part shows the number of documents missing from
 
 cleansed and raw versions of the corpus. The lower part of the table
 
 shows the intersections and exclusions in each corpus.
 

	
 
\begin{table}
 
\caption{The number of documents missing  from raw and cleansed extractions. }
 
\begin{center}
 
\begin{tabular}{l@{\quad}llllll}
 
\hline
 
\multicolumn{1}{l}{\rule{0pt}{12pt}category}&\multicolumn{1}{l}{\rule{0pt}{12pt}Vital }&\multicolumn{1}{l}{\rule{0pt}{12pt}Relevant }&\multicolumn{1}{l}{\rule{0pt}{12pt}Total }\\[5pt]
 
\hline
 
 
Cleansed &1284 & 1079 & 2363 \\
 
Raw & 276 & 4951 & 5227 \\
 
\hline
 
 missing only from cleansed &1065&2016&3081\\
 
  missing only from raw  &57 &160 &217 \\
 
  Missing from both &219 &1927&2146\\
 
\hline
0 comments (0 inline, 0 general)