Changeset - beb845cb846b
[Not reviewed]
Merge
0 1 0
Arjen de Vries (arjen) - 11 years ago 2014-06-12 03:02:24
arjen.de.vries@cwi.nl
Merge branch 'master' of https://scm.cwi.nl/IA/cikm-paper
1 file changed with 63 insertions and 5 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -83,98 +83,103 @@
 
% \alignauthor
 
% Ben Trovato\titlenote{Dr.~Trovato insisted his name be first.}\\
 
%        \affaddr{Institute for Clarity in Documentation}\\
 
%        \affaddr{1932 Wallamaloo Lane}\\
 
%        \affaddr{Wallamaloo, New Zealand}\\
 
%        \email{trovato@corporation.com}
 
% % 2nd. author
 
% \alignauthor
 
% G.K.M. Tobin\titlenote{The secretary disavows
 
% any knowledge of this author's actions.}\\
 
%        \affaddr{Institute for Clarity in Documentation}\\
 
%        \affaddr{P.O. Box 1212}\\
 
%        \affaddr{Dublin, Ohio 43017-6221}\\
 
%        \email{webmaster@marysville-ohio.com}
 
% }
 
% There's nothing stopping you putting the seventh, eighth, etc.
 
% author on the opening page (as the 'third row') but we ask,
 
% for aesthetic reasons that you place these 'additional authors'
 
% in the \additional authors block, viz.
 
% Just remember to make sure that the TOTAL number of authors
 
% is the number that will appear on the first page PLUS the
 
% number that will appear in the \additionalauthors section.
 
 
\maketitle
 
\begin{abstract}
 
 
Cumulative citation recommendation refers to the problem faced by
 
knowledge base curators, who need to continuously screen the media for
 
updates regarding the knowledge base entries they manage. Automatic
 
system support for this entity-centric information processing problem
 
requires complex pipe\-lines involving both natural language
 
processing and information retrieval components. The pipeline
 
encountered in a variety of systems that approach this problem
 
involves four stages: filtering, classification, ranking (or scoring),
 
and evaluation. Filtering is only an initial step, that reduces the
 
web-scale corpus of news and other relevant information sources that
 
may contain entity mentions into a working set of documents that should
 
be more manageable for the subsequent stages.
 
Nevertheless, this step has a large impact on the recall that can be
 
maximally attained! Therefore, in this study, we have focused on just
 
this filtering stage and conduct an in-depth analysis of the main design
 
decisions here: how to cleans the noisy text obtained online, 
 
the methods to create entity profiles, the
 
types of entities of interest, document type, and the grade of
 
relevance of the document-entity pair under consideration.
 
We analyze how these factors (and the design choices made in their
 
corresponding system components) affect filtering performance.
 
We identify and characterize the relevant documents that do not pass
 
<<<<<<< HEAD
 
the filtering stage by examining their contents. This way, we give
 
estimate of a practical upper-bound of recall for entity-centric stream
 
=======
 
the filtering stage by examing their contents. This way, we
 
estimate a practical upper-bound of recall for entity-centric stream
 
>>>>>>> 68fbea2f0372ab9b4199b88f980dbf5e97f49063
 
filtering.  
 
 
\end{abstract}
 
% A category with the (minimum) three required fields
 
\category{H.4}{Information Filtering}{Miscellaneous}
 
 
%A category including the fourth, optional field follows...
 
%\category{D.2.8}{Software Engineering}{Metrics}[complexity measures, performance measures]
 
 
\terms{Theory}
 
 
\keywords{Information Filtering; Cumulative Citation Recommendation; knowledge maintenance; Stream Filtering;  emerging entities} % NOT required for Proceedings
 
 
\section{Introduction}
 
In 2012, the Text REtrieval Conferences (TREC) introduced the Knowledge Base Acceleration (KBA) track  to help Knowledge Bases(KBs) curators. The track is crucial to address a critical need of KB curators: given KB (Wikipedia or Twitter) entities, filter  a stream  for relevant documents, rank the retrieved documents and recommend them to the KB curators. The track is crucial and timely because  the number of entities in a KB on one hand, and the huge amount of new information content on the Web on the other hand make the task of manual KB maintenance challenging.   TREC KBA's main task, Cumulative Citation Recommendation (CCR), aims at filtering a stream to identify   citation-worthy  documents, rank them,  and recommend them to KB curators.
 
  
 
   
 
 Filtering is a crucial step in CCR for selecting a potentially
 
 relevant set of working documents for subsequent steps of the
 
 pipeline out of a big collection of stream documents. The TREC
 
 Filtering track defines filtering as a ``system that sifts through
 
 stream of incoming information to find documents that are relevant to
 
 a set of user needs represented by profiles''
 
 \cite{robertson2002trec}. 
 
In the specific setting of CCR, these profiles are
 
represented by persistent KB entities (Wikipedia pages or Twitter
 
users, in the TREC scenario).
 
 
 
 TREC-KBA 2013's participants applied Filtering as a first step  to
 
 produce a smaller working set for subsequent experiments. As the
 
 subsequent steps of the pipeline use the output of the filter, the
 
 final performance of the system is dependent on this step.  The
 
 filtering step particularly determines the recall of the overall
 
 system. However, all 141 runs submitted by 13 teams did suffer from
 
 poor recall, as pointed out in the track's overview paper 
 
 \cite{frank2013stream}. 
 

	
 
The most important components of the filtering step are cleansing
 
(referring to pre-processing noisy web text into a canonical ``clean''
 
text format), and
 
entity profiling (creating a representation of the entity that can be
 
used to match the stream documents to). For each component, different
 
choices can be made. In the specific case of TREC KBA, organisers have
 
provided two different versions of the corpus: one that is already cleansed,
 
and one that is the raw data as originally collected by the organisers. 
 
Also, different
 
approaches use different entity profiles for filtering, varying from
 
using just the KB entities' canonical names to looking up DBpedia name
 
@@ -575,97 +580,149 @@ The break down of the raw corpus by document source category is presented in Tab
 
 
 
 
  
 
\subsection{Recall across document categories: others, news and social}
 
The recall for Wikipedia entities in Table \ref{tab:name} ranged from 61.8\% (canonicals) to 77.9\% (name-variants).  Table \ref{tab:source-delta} shows how recall is distributed across document categories. For Wikipedia entities, across all entity profiles, others have a higher recall followed by news, and then by social.  While the recall for news  ranged from 76.4\% to 98.4\%, the recall for social documents ranged from 65.7\% to 86.8\%. In Twitter entities, however, the pattern is different. In canonicals (and their partials), social documents achieve higher recall than news. 
 
%This indicates that social documents refer to Twitter entities by their canonical names (user names) more than news do. In name- variant partial, news achieve better results than social. The difference in recall between canonicals and name-variants show that news do not refer to Twitter entities by their user names, they refer to them by their display names.
 
Overall, across all entities types and all entity profiles, others achieve higher recall than news, and  news, in turn, achieve higher recall than social documents. 
 
 
% This suggests that social documents are the hardest  to retrieve.  This  makes sense since social posts such as tweets and blogs are short and are more likely to point to other resources, or use short informal names.
 
 
 
%%NOTE TABLE REMOVED:\\\\
 
%
 
%We computed four percentage increases in recall (deltas)  between the
 
%different entity profiles (Table \ref{tab:source-delta2}). The first
 
%delta is the recall percentage between canonical partial  and
 
%canonical. The second  is  between name= variant and canonical. The
 
%third is the difference between name-variant partial  and canonical
 
%partial and the fourth between name-variant partial and
 
%name-variant. we believe these four deltas offer a clear meaning. The
 
%delta between name-variant and canonical measn the percentage of
 
%documents that the new name variants retrieve, but the canonical name
 
%does not. Similarly, the delta between  name-variant partial and
 
%partial canonical-partial means the percentage of document-entity
 
%pairs that can be gained by the partial names of the name variants. 
 
% The  biggest delta  observed is in Twitter entities between partials
 
% of all name variants and partials of canonicals (93\%). delta. Both
 
% of them are for news category.  For Wikipedia entities, the highest
 
% delta observed is 19.5\% in cano\_part - cano followed by 17.5\% in
 
% all\_part in relevant. 
 
  
 
  \subsection{Entity Types: Wikipedia and Twitter}
 
Table \ref{tab:name} shows the difference between Wikipedia and Twitter entities.  Wikipedia entities' canonical achieves a recall of 70\%, and canonical partial  achieves a recall of 86.1\%. This is an increase in recall of 16.1\%. By contrast, the increase in recall of name-variant partial over name-variant is 8.3.   
 
%The high increase in recall when moving from canonical names  to their partial names, in comparison to the lower increase when moving from all name variants to their partial names can be explained by saturation. This is to mean that documents have already been extracted by the different name variants and thus using their partial names does not bring in many new relevant documents. 
 
One interesting observation is that, For Wikipedia entities, canonical partial achieves better recall than name-variant in both cleansed and raw corpus.  %In the raw extraction, the difference is about 3.7. 
 
In Twitter entities, however, it is different. Both canonical and their partials perform the same and the recall is very low. Canonical  and canonical partial are the same for Twitter entities because they are one word strings. For example in https://twitter.com/roryscovel, ``roryscovel`` is the canonical name and its partial is also the same.  
 
%The low recall is because the canonical names of Twitter entities are not really names; they are usually arbitrarily created user names. It shows that  documents  refer to them by their display names, rarely by their user name, which is reflected in the name-variant recall (67.9\%). The use of name-variant partial increases the recall to 88.2\%.
 
 
 
 
The tables in \ref{tab:name} and \ref{tab:source-delta} show recall for Wikipedia entities are higher than for Twitter. Generally, at both aggregate and document category levels, we observe that recall increases as we move from canonicals to canonical partial, to name-variant, and to name-variant partial. The only case where this does not hold is in the transition from Wikipedia's canonical partial to name-variant. At the aggregate level(as can be inferred from Table \ref{tab:name}), the difference in performance between  canonical  and name-variant partial is 31.9\% on all entities, 20.7\% on Wikipedia entities, and 79.5\% on Twitter entities. This is a significant performance difference. 
 
 
 
%% TODO: PERHAPS SUMMARY OF DISCUSSION HERE
 
 
 
\section{Impact on classification}
 
%   In the overall experimental setup, classification, ranking,  and evaluationn are kept constant. 
 
  In the overall experimental setup, classification, ranking,  and evaluationn are kept constant. Following \cite{balog2013multi} settings, we use WEKA's\footnote{http://www.cs.waikato.ac.nz/∼ml/weka/} Classification Random Forest. However, we use fewer numbers of features which we found to be more effective. We determined the effectiveness of the features by running the classification algorithm using the fewer features we implemented and their features. Our feature implementations achieved better results.  The total numbers of features we used are 13 and are listed below. 
 
  
 
\paragraph{Google's Cross Lingual Dictionary (GCLD)}
 
 
This is a mapping of strings to Wikipedia concepts and vice versa
 
\cite{spitkovsky2012cross}. 
 
(1) the probability with which a string is used as anchor text to
 
a Wikipedia entity 
 
 
\paragraph{jac} 
 
  Jaccard similarity between the document and the entity's Wikipedia page
 
\paragraph{cos} 
 
  Cosine similarity between the document and the entity's Wikipedia page
 
\paragraph{kl} 
 
  KL-divergence between the document and the entity's Wikipedia page
 
  
 
  \paragraph{PPR}
 
For each entity, we computed a PPR score from
 
a Wikipedia snapshot  and we kept the top 100  entities along
 
with the corresponding scores.
 
 
 
\paragraph{Surface Form (sForm)}
 
For each Wikipedia entity, we gathered DBpedia name variants. These
 
are redirects, labels and names.
 
 
 
\paragraph{Context (contxL, contxR)}
 
From the WikiLink corpus \cite{singh12:wiki-links}, we collected
 
all left and right contexts (2 sentences left and 2 sentences
 
right) and generated n-grams between uni-grams and quadro-grams
 
for each left and right context. 
 
Finally,  we select  the 5 most frequent n-grams for each context.
 
 
\paragraph{FirstPos}
 
  Term position of the first occurrence of the target entity in the document 
 
  body 
 
\paragraph{LastPos }
 
  Term position of the last occurrence of the target entity in the document body
 
 
\paragraph{LengthBody} Term count of document body
 
\paragraph{LengthAnchor} Term count  of document anchor
 
  
 
\paragraph{FirstPosNorm} 
 
  Term position of the first occurrence of the target entity in the document 
 
  body normalised by the document length 
 
\paragraph{MentionsBody }
 
  No. of occurrences of the target entity in the  document body
 
 
 
 
  
 
  Features we use incude similarity features such as cosine and jaccard, document-entity features such as docuemnt mentions entity in title, in body, frequency  of mention, etc., and related entity features such as page rank scores. In total we sue  The features consist of similarity measures between the KB entiities profile text, document-entity features such as  
 
  In here, we present results showing how  the choices in corpus, entity types, and entity profiles impact these latest stages of the pipeline.  In tables \ref{tab:class-vital} and \ref{tab:class-vital-relevant}, we show the performances in max-F. 
 
\begin{table*}
 
\caption{vital performance under different name variants(upper part from cleansed, lower part from raw)}
 
\begin{center}
 
\begin{tabular}{ll@{\quad}lllllll}
 
\hline
 
%&\multicolumn{1}{l}{\rule{0pt}{12pt}}&\multicolumn{1}{l}{\rule{0pt}{12pt}cano}&\multicolumn{1}{l}{\rule{0pt}{12pt}canonical partial }&\multicolumn{1}{l}{\rule{0pt}{12pt}name-variant }&\multicolumn{1}{l}{\rule{0pt}{50pt}name-variant partial}\\[5pt]
 
  &&cano&cano-part&all  &all-part \\
 
 
 
   all-entities &max-F& 0.241&0.261&0.259&0.265\\
 
%	      &SU&0.259  &0.258 &0.263 &0.262 \\	
 
   Wikipedia &max-F&0.252&0.274& 0.265&0.271\\
 
%	      &SU& 0.261& 0.259&  0.265&0.264 \\
 
   
 
   
 
   twitter &max-F&0.105&0.105&0.218&0.228\\
 
%     &SU &0.105&0.250& 0.254&0.253\\
 
  
 
 
 
\hline
 
\hline
 
  all-entities &max-F & 0.240 &0.272 &0.250&0.251\\
 
%	  &SU& 0.258   &0.151  &0.264  &0.258\\
 
   Wikipedia&max-F &0.257&0.257&0.257&0.255\\
 
%   &SU	     & 0.265&0.265 &0.266 & 0.259\\
 
   twitter&max-F &0.188&0.188&0.208&0.231\\
 
%	&SU&    0.269 &0.250 &0.250&0.253\\
 
\hline
 
 
\end{tabular}
 
\end{center}
 
\label{tab:class-vital}
 
\end{table*}
 
  
 
  
 
  \begin{table*}
 
\caption{vital-relevant performances under different name variants(upper part from cleansed, lower part from raw)}
 
\begin{center}
 
\begin{tabular}{ll@{\quad}lllllll}
 
\hline
 
%&\multicolumn{1}{l}{\rule{0pt}{12pt}}&\multicolumn{1}{l}{\rule{0pt}{12pt}canonical}&\multicolumn{1}{l}{\rule{0pt}{12pt}canonical partial }&\multicolumn{1}{l}{\rule{0pt}{12pt}name-variant }&\multicolumn{1}{l}{\rule{0pt}{50pt}name-variant partial}\\[5pt]
 
 
 &&cano&cano-part&all  &all-part \\
 
 
   all-entities &max-F& 0.497&0.560&0.579&0.607\\
 
%	      &SU&0.468  &0.484 &0.483 &0.492 \\	
 
   Wikipedia &max-F&0.546&0.618&0.599&0.617\\
 
@@ -791,102 +848,103 @@ entity profiles, relevance ratings, categories of documents, entity profiles. We
 
 
Experimental results show that cleansing can remove entire or parts of the content of documents making them difficult to retrieve. These documents can, otherwise, be retrieved from the raw version. The use of the raw corpus brings in documents that can not be retrieved from the cleansed corpus. This is true for all entity profiles and for all entity types. The  recall difference between the cleansed and raw ranges from  6.8\% t 26.2\%. These increases, in actual document-entity pairs,  is in thousands. We believe this is a substantial increase. However, the recall increases do not always translate to improved F-score in overall performance.  In the vital relevance ranking for both Wikipedia and aggregate entities, the cleansed version performs better than the raw version.  In Twitter entities, the raw corpus achieves better except in the case of all name-variant, though the difference is negligible.  However, for vital-relevant, the raw corpus performs  better across all entity profiles and entity types 
 
except in partial canonical names of Wikipedia entities. 
 
 
The use of different profiles also shows a big difference in recall. Except in the case of Wikipedia where the use of canonical partial achieves better than name-variant, there is a steady increase in recall from canonical to  canonical partial, to name-variant, and to name-variant partial. This pattern is also observed across the document categories.  However, here too, the relationship between   the gain in recall as we move from less richer profile to a more richer profile and overall performance as measured by F-score  is not linear. 
 
 
 
%%%%% MOVED FROM LATER ON - CHECK FLOW
 
 
There is a trade-off between using a richer entity-profile and retrieval of irrelevant documents. The richer the profile, the more relevant documents it retrieves, but also the more irrelevant documents. To put it into perspective, lets compare the number of documents that are retrieved with  canonical partial and with name-variant partial. Using the raw corpus, the former retrieves a total of 2547487 documents and achieves a recall of 72.2\%. By contrast, the later retrieves a total of 4735318 documents and achieves a recall of 90.2\%. The total number of documents extracted increases by 85.9\% for a recall gain of 18\%. The rest of the documents, that is 67.9\%, are newly introduced irrelevant documents. 
 
 
%%%%%%%%%%%%
 
 
 
In vital ranking, across all entity profiles and types of corpus, Wikipedia's canonical partial  achieves better performance than any other Wikipedia entity profiles. In vital-relevant documents too, Wikipedia's canonical partial achieves the best result. In the raw corpus, it achieves a little less than name-variant partial. For Twitter entities, the name-variant partial profile achieves the highest F-score across all entity profiles and types of corpus.  
 
 
 
There are 3 interesting observations: 
 
 
1) cleansing impacts Twitter
 
entities and relevant documents.  This  is validated by the
 
observation that recall  gains in Twitter entities and the relevant
 
categories in the raw corpus also translate into overall performance
 
gains. This observation implies that cleansing removes relevant and
 
social documents than it does vital and news. That it removes relevant
 
documents more than vital can be explained by the fact that cleansing
 
removes the related links and adverts which may contain a mention of
 
the entities. One example we saw was the the cleansing removed an
 
image with a text of an entity name which was actually relevant. And
 
that it removes social documents can be explained by the fact that
 
most of the missing of the missing  docuemnts from cleansed are
 
social. And all the docuemnts that are missing from raw corpus
 
social. So in both cases socuial seem to suffer from text
 
transformation and cleasing processes. 
 
 
%%%% NEEDS WORK:
 
 
2) Taking both performance (recall at filtering and overall F-score
 
during evaluation) into account, there is a clear trade-off between using a richer entity-profile and retrieval of irrelevant documents. The richer the profile, the more relevant documents it retrieves, but also the more irrelevant documents. To put it into perspective, lets compare the number of documents that are retrieved with  canonical partial and with name-variant partial. Using the raw corpus, the former retrieves a total of 2547487 documents and achieves a recall of 72.2\%. By contrast, the later retrieves a total of 4735318 documents and achieves a recall of 90.2\%. The total number of documents extracted increases by 85.9\% for a recall gain of 18\%. The rest of the documents, that is 67.9\%, are newly introduced irrelevant documents. 
 
 
Wikipedia's canonical partial is the best entity profile for Wikipedia entities. This is interesting  to see that the retrieval of of  thousands vital-relevant document-entity pairs by name-variant partial does not translate to an increase in over all performance. It is even more interesting since canonical partial was not considered as contending profile for stream filtering by any of participant to the best of our knowledge. With this understanding, there  is actually no need to go and fetch different names variants from DBpedia, a saving of time and computational resources.
 
 
 
%%%%%%%%%%%%
 
 
 
 
 
<<<<<<< HEAD
 
<<<<<<< HEAD
 
The deltas between entity profiles, relevance ratings, and document categories reveal four differences between Wikipedia and Twitter entities. 1) For Wikipedia entities, the difference between canonical partial and canonical is higher(16.1\%) than between name-variant partial and  name-variant(18.3\%).  This can be explained by saturation. This is to mean that documents have already been extracted by  name-variants and thus using their partials does not bring in many new relevant documents.  2) Twitter entities are mentioned by name-variant or name-variant partial and that is seen in the high recall achieved  compared to the low recall achieved by canonical(or their partial). This indicates that documents (specially news and others) almost never use user names to refer to Twitter entities. Name-variant partials are the best entity profiles for Twitter entities. 3) However, comparatively speaking, social documents refer to Twitter entities by their user names than news and others suggesting a difference in 
 
adherence to standard in names and naming. 4) Wikipedia entities achieve higher recall and higher overall performance. 
 
=======
 
The deltas between entity profiles, relevance ratings, and document categories reveal four differences between Wikipedia and Twitter entities. 1) For Wikipedia entities, the difference between canonical partial and canonical is higher(16.1\%) than between name-variant partial and  name-variant(8.3\%).  This can be explained by saturation. This is to mean that documents have already been extracted by  name-variants and thus using their partials does not bring in many new relevant documents.  2) Twitter entities are mentioned by name-variant or name-variant partial and that is seen in the high recall achieved  compared to the low recall achieved by canonical(or their partial). This indicates that documents (specially news and others) almost never use user names to refer to Twitter entities. Name-variant partials are the best entity profiles for Twitter entities. 3) However, comparatively speaking, social documents refer to Twitter entities by their user names than news and others suggesting a difference in adherence to standard in names and naming. 4) Wikipedia entities achieve higher recall and higher overall performance. 
 
>>>>>>> 60fbfbab0287ab72519987bdcba3adb5a0aa93c8
 
=======
 
The deltas between entity profiles, relevance ratings, and document categories reveal four differences between Wikipedia and Twitter entities. 1) For Wikipedia entities, the difference between canonical partial and canonical is higher(16.1\%) than between name-variant partial and  name-variant(8.3\%).  This can be explained by saturation. This is to mean that documents have already been extracted by  name-variants and thus using their partials does not bring in many new relevant documents.  2) Twitter entities are mentioned by name-variant or name-variant partial and that is seen in the high recall achieved  compared to the low recall achieved by canonical(or their partial). This indicates that documents (specially news and others) almost never use user names to refer to Twitter entities. Name-variant partials are the best entity profiles for Twitter entities. 3) However, comparatively speaking, social documents refer to Twitter entities by their user names than news and others suggesting a difference in 
 
adherence to standard in names and naming. 4) Wikipedia entities achieve higher recall and higher overall performance. 
 
>>>>>>> 60fbfbab0287ab72519987bdcba3adb5a0aa93c8
 
 
The high recall and subsequent higher overall performance of Wikipedia entities can  be due to two reasons. 1) Wikipedia entities are relatively well described than Twitter entities. The fact that we can retrieve different name variants from DBpedia is a measure of relatively rich description. Rich description plays a role in both filtering and computation of features such as similarity measures in later stages of the pipeline.   By contrast, we have only two names for Twitter entities: their user names and their display names which we collect from their Twitter pages. 2) There is not DBpedia-like resource for Twitter entities from which alternative names cane be collected.   
 
 
 
In the experimental results, we also observed that recall scores in the vital category are higher than in the relevant category. This observation  confirms one commonly held assumption:(frequency) mention is related to relevance.  this is the assumption why term frequency is used an indicator of document relevance in many information retrieval systems. The more  a document mentions an entity explicitly by name, the more likely the document is vital to the entity.
 
 
Across document categories, we observe a pattern in recall of others, followed by news, and then by social. Social documents are the hardest to retrieve. This can be explained by the fact that social documents (tweets and  blogs) are more likely to point to a resource where the entity is mentioned, mention the entities with some short abbreviation, or talk without mentioning the entities, but with some context in mind. By contrast news documents mention the entities they talk about using the common name variants more than social documents do. However, the greater difference in percentage recall between the different entity profiles in the news category indicates news refer to a given entity with different names, rather than by one standard name. By contrast others show least variation in referring to news. Social documents falls in between the two.  The deltas, for Wikipedia entities, between canonical partials and canonicals,  and name-variants and canonicals are high, an indication that canonical partials 
 
and name-variants bring in new relevant documents that can not be retrieved by canonicals. The rest of the two deltas are very small,  suggesting that partial names of name variants do not bring in new relevant documents. 
 
 
 
\section{Unfilterable documents}
 
 
\subsection{Missing vital-relevant documents \label{miss}}
 
 
% 
 
 
 The use of name-variant partial for filtering is an aggressive attempt to retrieve as many relevant documents as possible at the cost of retrieving irrelevant documents. However, we still miss about  2363(10\%) of the vital-relevant documents.  Why are these documents missed? If they are not mentioned by partial names of name variants, what are they mentioned by? Table \ref{tab:miss} shows the documents that we miss with respect to cleansed and raw corpus.  The upper part shows the number of documents missing from cleansed and raw versions of the corpus. The lower part of the table shows the intersections and exclusions in each corpus.  
 
 
\begin{table}
 
\caption{The number of documents missing  from raw and cleansed extractions. }
 
\begin{center}
 
\begin{tabular}{l@{\quad}llllll}
 
\hline
 
\multicolumn{1}{l}{\rule{0pt}{12pt}category}&\multicolumn{1}{l}{\rule{0pt}{12pt}Vital }&\multicolumn{1}{l}{\rule{0pt}{12pt}Relevant }&\multicolumn{1}{l}{\rule{0pt}{12pt}Total }\\[5pt]
 
\hline
 
 
Cleansed &1284 & 1079 & 2363 \\
 
Raw & 276 & 4951 & 5227 \\
 
\hline
 
 missing only from cleansed &1065&2016&3081\\
 
  missing only from raw  &57 &160 &217 \\
 
  Missing from both &219 &1927&2146\\
 
\hline
 
 
 
 
\end{tabular}
 
\end{center}
 
\label{tab:miss}
 
\end{table}
 
 
One would  assume that  the set of document-entity pairs extracted from cleansed are a sub-set of those   that are extracted from the raw corpus. We find that that is not the case. There are 217  unique entity-document pairs that are retrieved from the cleansed corpus, but not from the raw. 57 of them are vital.    Similarly,  there are  3081 document-entity pairs that are missing  from cleansed, but are present in  raw. 1065 of them are vital.  Examining the content of the documents reveals that it is due to a missing part of text from a corresponding document.  All the documents that we miss from the raw corpus are social. These are documents such as tweets and blogs, posts from other social media. To meet the format of the raw data (binary byte array), some of them must have been converted later, after collection and on the way lost a part or the entire content. It is similar for the documents that we miss from cleansed: a part or the entire content  is lost in during the cleansing process (the removal of 
 
HTML tags and non-English documents).  In both cases the mention of the entity happened to be on the part of the text that is cut out during transformation. 
 
 
 
 
 The interesting set  of relevance judgments are those that  we miss from both raw and cleansed extractions. These are 2146 unique document-entity pairs, 219 of them are with vital relevance judgments.   The total number of entities in the missed vital annotations is  28 Wikipedia and 7  Twitter, making a total of 35. The  great majority (86.7\%) of the documents are social. This suggests that social (tweets and blogs) can talk about the entities without mentioning  them by name more than news and others do. This is, of course, inline with intuition. 
 
   
 
0 comments (0 inline, 0 general)