Changeset - c8b8892c5424
[Not reviewed]
0 1 0
Gebrekirstos Gebremeskel - 11 years ago 2014-06-12 04:44:35
destinycome@gmail.com
updated
1 file changed with 11 insertions and 12 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -207,17 +207,16 @@ performance. The main contribution of the
 
paper are an in-depth analysis of the factors that affect entity-based
 
stream filtering, identifying optimal entity profiles without
 
compromising precision, describing and classifying relevant documents
 
that are not amenable to filtering , and estimating the upper-bound
 
of recall on entity-based filtering.
 
 
The rest of the paper is is organized as follows: 
 
The rest of the paper  is organized as follows. Section \ref{sec:desc} describes the dataset and section \ref{sec:fil} defines the task. In section  \ref{sec:lit}, we discuss related litrature folowed by a discussion of our method in \ref{mthd}. Following that,  we present the experimental resulsy in \ref{sec:expr}, and discuss and analyze them in \ref{sec:analysis}. Towards the end, we discuss the impact of filtering choices on classification in section \ref{sec:impact}, examine and categorize unfilterable docuemnts in section \ref{sec:unfil}. Finally, we present our conclusions in \section{sec:conc}.
 
 
\textbf{TODO!!}
 
 
 \section{Data Description}
 
 \section{Data Description}\label{sec:desc}
 
We base this analysis on the TREC-KBA 2013 dataset%
 
\footnote{\url{http://trec-kba.org/trec-kba-2013.shtml}}
 
that consists of three main parts: a time-stamped stream corpus, a set of
 
KB entities to be curated, and a set of relevance judgments. A CCR
 
system now has to identify for each KB entity which documents in the
 
stream corpus are to be considered by the human curator.
 
@@ -304,13 +303,13 @@ on.   2) some groups have so small number of annotations that treating
 
them independently does not make much sense. Majority of vital or
 
relevant annotations are social (social and weblog) (63.13\%). News
 
(mainstream +news) make up 30\%. Thus, news and social make up about
 
93\% of all annotations.  The rest make up about 7\% and are all
 
grouped as others.
 
 
 \section{Stream Filtering}
 
 \section{Stream Filtering}\label{sec:fil}
 
 
 
 The TREC Filtering track defines filtering as a ``system that sifts
 
 through stream of incoming information to find documents that are
 
 relevant to a set of user needs represented by profiles''
 
 \cite{robertson2002trec}. Its information needs are long-term and are
 
 represented by persistent profiles, unlike the traditional search system
 
@@ -365,24 +364,24 @@ To achieve this, we use recall percentages in the filtering stage for
 
the different choices of entity profiles. However, we use the overall
 
performance to select the best entity profiles.To generate the overall
 
pipeline performance we use the official TREC KBA evaluation metric
 
and scripts \cite{frank2013stream} to report max-F, the maximum
 
F-score obtained over all relevance cut-offs.
 
 
\section{Literature Review}
 
\section{Literature Review} \label{sec:rev}
 
There has been a great deal of interest  as of late on entity-based filtering and ranking. One manifestation of that is the introduction of TREC KBA in 2012. Following that, there have been a number of research works done on the topic \cite{frank2012building, ceccarelli2013learning, taneva2013gem, wang2013bit, balog2013multi}.  These works are based on KBA 2012 task and dataset  and they address the whole problem of entity filtering and ranking.  TREC KBA continued in 2013, but the task underwent some changes. The main change between  the 2012 and 2013 are in the number of entities, the type of entities, the corpus and the relevance rankings.
 
 
The number of entities increased from 29 to 141, and it included 20 Twitter entities. The TREC KBA 2012 corpus is 1.9TB after xz-compression and has  400M documents. By contrast, the KBA 2013 corpus is 6.45 after XZ-compression and GPG encryption. A version with all-non English documented removed  is 4.5 TB and consists of 1 Billion documents. The 2013 corpus subsumed the 2012 corpus and added others from spinn3r, namely main-stream news, forum, arxiv, classified, reviews and meme-tracker.  A more important difference is, however, a change in the definitions of relevance ratings vital and relevant. While in KBA 2012, a document was judged vital if it has citation-worthy content for a given entity, in 2013 it must have the freshliness, that is the content must trigger an editing of the given entity's KB entry. 
 
 
While the tasks of 2012 and 2013 are fundamentally the same, the approaches  varied due  to the size of the corpus. In 2013, all participants used filtering to reduce the size of the big corpus.   They used different ways of filtering: many of them used two or more of different name variants from DBpedia such as labels, names, redirects, birth names, alias, nicknames, same-as and alternative names \cite{wang2013bit,dietzumass,liu2013related, zhangpris}.  Although most of the participants used DBpedia name variants none of them used all the name variants.  A few other participants used bold words in the first paragraph of the Wikipedia entity's profiles and anchor texts from other Wikipedia pages  \cite{bouvierfiltering, niauniversity}. One participant used Boolean \emph{and} built from the tokens of the canonical names \cite{illiotrec2013}.  
 
 
All of the studies used filtering as their first step to generate a smaller set of documents. And many systems suffered from poor recall and their system performances were highly affected \cite{frank2012building}. Although  systems  used different entity profiles to filter the stream, and achieved different performance levels, there is no study on and the factors and choices that affect the filtering step itself. Of course filtering has been extensively examined in TREC Filtering \cite{robertson2002trec}. However, those studies were isolated in the sense that they were intended to optimize recall. What we have here is a different scenario. Documents have relevance rating. Thus we want to study filtering in connection to  relevance to the entities and thus can be done by coupling filtering to the later stages of the pipeline. This is new to the best of our knowledge and the TREC KBA problem setting and data-sets offer a good opportunity to examine this aspect of filtering. 
 
 
Moreover, there has not been a chance to study at this scale and/or a study into what type of documents defy filtering and why? In this paper, we conduct a manual examination of the documents that are missing and classify them into different categories. We also estimate the general upper bound of recall using the different entities profiles and choose the best profile that results in an increased over all performance as measured by F-measure. 
 
 
\section{Method}
 
\section{Method}\label{sec:mth}
 
All analyses in this paper are carried out on the documents that have
 
relevance assessments associated to them. For this purpose, we
 
extracted those documents from the big corpus. We experiment with all
 
KB entities. For each KB entity, we extract different name variants
 
from DBpedia and Twitter.
 
\
 
@@ -505,13 +504,13 @@ The 2013 training and test data contain 68405
 
annotations, of which 50688 are unique document-entity pairs.   Out of
 
these, 24162 unique document-entity pairs are vital (9521) or relevant
 
(17424).
 
 
 
 
 
\section{Experiments and Results}
 
\section{Experiments and Results}\label{sec:expr}
 
 We conducted experiments to study  the effect of cleansing, different entity profiles, types of entities, category of documents, relevance ranks (vital or relevant), and the impact on classification.  In the following subsections, we present the results in different categories, and describe them.
 
 
 
 \subsection{Cleansing: raw or cleansed}
 
\begin{table}
 
\caption{Percentage of vital or relevant documents retrieved under different name variants (upper part from cleansed, lower part from raw)}
 
\begin{center}
 
@@ -711,13 +710,13 @@ to name-variant. At the aggregate level (as can be inferred from Table
 
name-variant partial is 31.9\% on all entities, 20.7\% on Wikipedia
 
entities, and 79.5\% on Twitter entities. 
 
 
Section \ref{sec:analysis} discusses the most plausible explanations for these findings.
 
%% TODO: PERHAPS SUMMARY OF DISCUSSION HERE
 
 
\section{Impact on classification}
 
\section{Impact on classification}\label{sec:impact}
 
In the overall experimental setup, classification, ranking, and
 
evaluation are kept constant. Following \cite{balog2013multi}
 
settings, we use
 
WEKA's\footnote{\url{http://www.cs.waikato.ac.nz/~ml/weka/}} Classification
 
Random Forest. However, we use fewer numbers of features which we
 
found to be more effective. We determined the effectiveness of the
 
@@ -1001,13 +1000,13 @@ The high recall and subsequent higher overall performance of Wikipedia entities
 
In the experimental results, we also observed that recall scores in the vital category are higher than in the relevant category. This observation  confirms one commonly held assumption:(frequency) mention is related to relevance.  this is the assumption why term frequency is used an indicator of document relevance in many information retrieval systems. The more  a document mentions an entity explicitly by name, the more likely the document is vital to the entity.
 
 
Across document categories, we observe a pattern in recall of others, followed by news, and then by social. Social documents are the hardest to retrieve. This can be explained by the fact that social documents (tweets and  blogs) are more likely to point to a resource where the entity is mentioned, mention the entities with some short abbreviation, or talk without mentioning the entities, but with some context in mind. By contrast news documents mention the entities they talk about using the common name variants more than social documents do. However, the greater difference in percentage recall between the different entity profiles in the news category indicates news refer to a given entity with different names, rather than by one standard name. By contrast others show least variation in referring to news. Social documents falls in between the two.  The deltas, for Wikipedia entities, between canonical partials and canonicals,  and name-variants and canonicals are high, an indication that canonical partials 
 
and name-variants bring in new relevant documents that can not be retrieved by canonicals. The rest of the two deltas are very small,  suggesting that partial names of name variants do not bring in new relevant documents. 
 
 
 
\section{Unfilterable documents}
 
\section{Unfilterable documents}\label{sec:unfil}
 
 
\subsection{Missing vital-relevant documents \label{miss}}
 
 
% 
 
 
 The use of name-variant partial for filtering is an aggressive attempt to retrieve as many relevant documents as possible at the cost of retrieving irrelevant documents. However, we still miss about  2363(10\%) of the vital-relevant documents.  Why are these documents missed? If they are not mentioned by partial names of name variants, what are they mentioned by? Table \ref{tab:miss} shows the documents that we miss with respect to cleansed and raw corpus.  The upper part shows the number of documents missing from cleansed and raw versions of the corpus. The lower part of the table shows the intersections and exclusions in each corpus.  
 
@@ -1059,17 +1058,17 @@ We observed that there are vital-relevant documents that we miss from raw only,
 
\paragraph*{Artist - work} Documents that discuss the work of artists can be relevant to the artists. Such cases include  books or films being vital for the book author or the director (actor) of the film. Robocop is film whose screenplay is by Joshua Zetumer. A blog that talks about the film was judged vital for Joshua Zetumer. 
 
\paragraph*{Politician - constituency} A major political event in a certain constituency is vital for the politician from that constituency. 
 
 A good example is a weblog that talks about two north Dakota counties being drought disasters. The news is vital for Joshua Boschee, a politician, a member of North Dakota democratic party.  
 
\paragraph*{head - organization} A document that talks about an organization of which the entity is the head can be vital for the entity.  Jasper\_Schneider is USDA Rural Development state director for North Dakota and an article about problems of primary health centers in North Dakota is judged vital for him. 
 
\paragraph*{World Knowledge} Some things are impossible to know without your world knowledge. For example ''refreshments, treats, gift shop specials, "bountiful, fresh and fabulous holiday decor," a demonstration of simple ways to create unique holiday arrangements for any home; free and open to the public`` is judged relevant to Hjemkomst\_Center. This is a social media post, and unless one knows the person posting it, there is no way that this text shows that. Similarly ''learn about the gray wolf's hunting and feeding behaviors and watch the wolves have their evening meal of a full deer carcass; $15 for members, $20 for nonmembers`` is judged vital to Red\_River\_Zoo.  
 
\paragraph*{No document content} A small number of documents were found to have no content.
 
\paragraph*{Disagreement} For a few remaining documents, the authors disagree with the assessors as to why these are vital to the entity.
 

	
 
\paragraph*{Disagreement} For a few remaining documents, the authors disagree with the assessors as to why these are vital to the entity.
 
 
 
\section{Conclusions}
 
 
\section{Conclusions} \label{sec:conc}
 
In this paper, we examined the filtering stage of the entity-centric stream filtering and ranking  by holding the later stages of fixed. In particular, we studied the cleansing step, different entity profiles, type of entities(Wikipedia or Twitter), categories of documents(news, social, or others) and the relevance ratings. We attempted to address the following research questions: 1) does cleansing affect filtering and subsequent performance? 2) what is the most effective way of entity profiling? 3) is filtering different for Wikipedia and Twitter entities? 4) are some type of documents easily filterable and others not? 5) does a gain in recall at filtering step translate to a gain in F-measure at the end of the pipeline? and 6) what are the circumstances under which vital documents can not be retrieved? 
 
 
Cleansing does remove parts or entire contents of documents making them irretrievable. However, because of the introduction of false positives, recall gains by  raw corpus and some  richer entity profiles do not necessarily translate to overall performance gain. The results conclusion on this is mixed in the sense that cleansing helps improve the recall on vital documents and Wikipedia entities, but reduces the recall on Twitter entities and the relative category of relevance ranking. Vital and relevant documents show a difference in retrieval nonperformance documents are easier to filter than relevant.  
 
 
 
Despite an aggressive attempt to filter as many vital-relevant documents as possible,  we observe that there are still documents that we miss. While some are possible to retrieve with some modifications, some others are not. There are some document that indicate that an information filtering system does not seem to get them no matter how rich representation of entities they use. These circumstances under which this happens are many. We found that some documents have no content at all, subjectivity(it is not clear why some are judged vital). However, the main circumstances under which vital  documents can defy filtering is: outgoing link mentions, 
0 comments (0 inline, 0 general)