Changeset - d1e368c5ad4e
[Not reviewed]
0 1 0
Gebrekirstos Gebremeskel - 11 years ago 2014-06-12 06:53:55
destinycome@gmail.com
updated
1 file changed with 18 insertions and 18 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -120,25 +120,25 @@ web-scale corpus of news and other relevant information sources that
 
may contain entity mentions into a working set of documents that should
 
be more manageable for the subsequent stages.
 
Nevertheless, this step has a large impact on the recall that can be
 
maximally attained! Therefore, in this study, we have focused on just
 
this filtering stage and conduct an in-depth analysis of the main design
 
decisions here: how to cleans the noisy text obtained online, 
 
the methods to create entity profiles, the
 
types of entities of interest, document type, and the grade of
 
relevance of the document-entity pair under consideration.
 
We analyze how these factors (and the design choices made in their
 
corresponding system components) affect filtering performance.
 
We identify and characterize the relevant documents that do not pass
 
the filtering stage by examing their contents. This way, we
 
the filtering stage by examining their contents. This way, we
 
estimate a practical upper-bound of recall for entity-centric stream
 
filtering.
 
 
\end{abstract}
 
% A category with the (minimum) three required fields
 
\category{H.4}{Information Filtering}{Miscellaneous}
 
 
%A category including the fourth, optional field follows...
 
%\category{D.2.8}{Software Engineering}{Metrics}[complexity measures, performance measures]
 
 
\terms{Theory}
 
 
@@ -199,25 +199,25 @@ main components.  In particular, we study the effect of cleansing,
 
entity profiling, type of entity filtered for (Wikipedia or Twitter), and
 
document category (social, news, etc) on the filtering components'
 
performance. The main contribution of the
 
paper are an in-depth analysis of the factors that affect entity-based
 
stream filtering, identifying optimal entity profiles without
 
compromising precision, describing and classifying relevant documents
 
that are not amenable to filtering , and estimating the upper-bound
 
of recall on entity-based filtering.
 
 
 
The rest of the paper  is organized as follows. Section \ref{sec:desc}
 
describes the dataset and section \ref{sec:fil} defines the task. In
 
section  \ref{sec:lit}, we discuss related literature folowed by a
 
section  \ref{sec:lit}, we discuss related literature followed by a
 
discussion of our method in \ref{sec:mthd}. Following that,  we
 
present the experimental results in \ref{sec:expr}, and discuss and
 
analyze them in \ref{sec:analysis}. Towards the end, we discuss the
 
impact of filtering choices on classification in section
 
\ref{sec:impact}, examine and categorize unfilterable documents in
 
section \ref{sec:unfil}. Finally, we present our conclusions in
 
\ref{sec:conc}.
 
 
 
 
 \section{Data Description}\label{sec:desc}
 
We base this analysis on the TREC-KBA 2013 dataset%
 
@@ -284,25 +284,25 @@ that can be useful for initial KB-dossier are annotated as
 
\emph{relevant}. Documents with no relevant content are labeled
 
\emph{neutral} and spam is labeled as \emph{garbage}. 
 
%The inter-annotator agreement on vital in 2012 was 70\% while in 2013 it
 
%is 76\%. This is due to the more refined definition of vital and the
 
%distinction made between vital and relevant.
 
 
\subsection{Breakdown of results by document source category}
 
 
%The results of the different entity profiles on the raw corpus are
 
%broken down by source categories and relevance rank% (vital, or
 
%relevant).  
 
In total, the dataset contains 24162 unique entity-document
 
pairs, vital or relevant; 9521 of these have been labelled as vital,
 
pairs, vital or relevant; 9521 of these have been labeled as vital,
 
and the remaining 17424 as relevant.
 
All documents are categorized into 8 source categories: 0.98\%
 
arxiv(a), 0.034\% classified(c), 0.34\% forum(f), 5.65\% linking(l),
 
11.53\% mainstream-news(m-n), 18.40\% news(n), 12.93\% social(s) and
 
50.2\% weblog(w). We have regrouped these source categories into three
 
groups ``news'', ``social'', and ``other'', for two reasons: 1) some groups
 
are very similar to each other. Mainstream-news and news are
 
similar. The reason they exist separately, in the first place,  is
 
because they were collected from two different sources, by different
 
groups and at different times. we call them news from now on.  The
 
same is true with weblog and social, and we call them social from now
 
on.   2) some groups have so small number of annotations that treating
 
@@ -318,74 +318,74 @@ grouped as others.
 
 through stream of incoming information to find documents that are
 
 relevant to a set of user needs represented by profiles''
 
 \cite{robertson2002trec}. Its information needs are long-term and are
 
 represented by persistent profiles, unlike the traditional search system
 
 whose adhoc information need is represented by a search
 
 query. Adaptive Filtering, one task of the filtering track,  starts
 
 with  a persistent user profile and a very small number of positive
 
 examples. A filtering system can improve its user profiles with a
 
 feedback obtained from interaction with users, and thereby improve
 
 its performance. The  filtering stage of entity-based stream
 
 filtering and ranking can be likened to the adaptive filtering task
 
 of the filtering track. The persistent information needs are the KB
 
 entities, and the relevance judgments are the small number of postive
 
 entities, and the relevance judgments are the small number of positive
 
 examples.
 
 
Stream filtering is then the task to, given a stream of documents of news items, blogs
 
 and social media on one hand and a set of KB entities on the other,
 
 to filter the stream for  potentially relevant documents  such that
 
 the relevance classifier(ranker) achieves as maximum performance as
 
 possible.  Specifically, we conduct in-depth analysis on the choices
 
 and factors affecting the cleansing step, the entity-profile
 
 construction, the document category of the stream items, and the type
 
 of entities (Wikipedia or Twitter) , and finally their impact overall
 
 performance of the pipeline. Finally, we conduct manual examination
 
 of the vital documents that defy filtering. We strive to answer the
 
 following research questions:
 
\begin{enumerate}
 
  \item Does cleansing affect filtering and subsequent performance
 
  \item What is the most effective way of entity profile representation
 
  \item Is filtering different for Wikipedia and Twitter entities?
 
  \item Are some type of documents easily filterable and others not?
 
  \item Does a gain in recall at filtering step translate to a gain in F-measure at the end of the pipeline?
 
  \item What characterizes the vital (and relevant) documents that are
 
    missed in the filtering step?
 
\end{enumerate}
 
 
The TREC filtering and the filtering as part of the entity-centric
 
stream filtering and ranking pipepline have different purposes. The
 
stream filtering and ranking pipeline have different purposes. The
 
TREC filtering track's goal is the binary classification of documents:
 
for each incoming docuemnt, it decides whether the incoming document
 
is relevant or not for a given profile. The docuemnts are either
 
for each incoming document, it decides whether the incoming document
 
is relevant or not for a given profile. The documents are either
 
relevant or not. In our case, the documents have relevance ranking and
 
the goal of the filtering stage is to filter as many potentially
 
relevant documents as possible, but less  irrelevant documents as
 
possible not to obfuscate the later stages of the piepline.  Filtering
 
possible not to obfuscate the later stages of the pipeline.  Filtering
 
as part of the pipeline needs that delicate balance between retrieving
 
relavant documents and irrrelevant documensts. Bcause of this,
 
relevant documents and irrelevant documents. Because of this,
 
filtering in this case can only be studied by binding it to the later
 
stages of the entity-centric pipeline. This bond influnces how we do
 
stages of the entity-centric pipeline. This bond influences how we do
 
evaluation.
 
 
To achieve this, we use recall percentages in the filtering stage for
 
the different choices of entity profiles. However, we use the overall
 
performance to select the best entity profiles.To generate the overall
 
pipeline performance we use the official TREC KBA evaluation metric
 
and scripts \cite{frank2013stream} to report max-F, the maximum
 
F-score obtained over all relevance cut-offs.
 
 
\section{Literature Review} \label{sec:lit}
 
 
There has been a great deal of interest  as of late on entity-based filtering and ranking.  The Text Analysis Conference   started  Knwoledge Base Population with the goal of developing methods and technologies to fascilitate the creation and population of KBs \cite{ji2011knowledge}. The most relevant track in KBP is entity-linking: given an entity and
 
a document containing a mention of the entity, identify the mention in the document and link it to the its profile in a KB.  Many studies have attempted to address this task \cite{dalton2013neighborhood, dredze2010entity, davis2012named}. 
 
There has been a great deal of interest  as of late on entity-based filtering and ranking.  The Text Analysis Conference   started  Knowledge Base Population with the goal of developing methods and technologies to facilitate the creation and population of KBs \cite{ji2011knowledge}. The most relevant track in KBP is entity-linking: given an entity and
 
a document containing a mention of the entity, identify the mention in the document and link it to  its profile in a KB.  Many studies have attempted to address this task \cite{dalton2013neighborhood, dredze2010entity, davis2012named}. 
 
 
 A more recent manifestation of that is the introduction of TREC KBA in 2012.  Following that, there have been a number of research works done on the topic \cite{frank2012building, ceccarelli2013learning, taneva2013gem, wang2013bit, balog2013multi}.  These works are based on KBA 2012 task and dataset  and they address the whole problem of entity filtering and ranking.  TREC KBA continued in 2013, but the task underwent some changes. The main change between  the 2012 and 2013 are in the number of entities, the type of entities, the corpus and the relevance rankings.
 
 
The number of entities increased from 29 to 141, and it included 20 Twitter entities. The TREC KBA 2012 corpus is 1.9TB after xz-compression and has  400M documents. By contrast, the KBA 2013 corpus is 6.45 after XZ-compression and GPG encryption. A version with all-non English documented removed  is 4.5 TB and consists of 1 Billion documents. The 2013 corpus subsumed the 2012 corpus and added others from spinn3r, namely main-stream news, forum, arxiv, classified, reviews and meme-tracker.  A more important difference is, however, a change in the definitions of relevance ratings vital and relevant. While in KBA 2012, a document was judged vital if it has citation-worthy content for a given entity, in 2013 it must have the freshliness, that is the content must trigger an editing of the given entity's KB entry. 
 
 
While the tasks of 2012 and 2013 are fundamentally the same, the approaches  varied due  to the size of the corpus. In 2013, all participants used filtering to reduce the size of the big corpus.   They used different ways of filtering: many of them used two or more of different name variants from DBpedia such as labels, names, redirects, birth names, alias, nicknames, same-as and alternative names \cite{wang2013bit,dietzumass,liu2013related, zhangpris}.  Although most of the participants used DBpedia name variants none of them used all the name variants.  A few other participants used bold words in the first paragraph of the Wikipedia entity's profiles and anchor texts from other Wikipedia pages  \cite{bouvierfiltering, niauniversity}. One participant used Boolean \emph{and} built from the tokens of the canonical names \cite{illiotrec2013}.  
 
 
All of the studies used filtering as their first step to generate a smaller set of documents. And many systems suffered from poor recall and their system performances were highly affected \cite{frank2012building}. Although  systems  used different entity profiles to filter the stream, and achieved different performance levels, there is no study on and the factors and choices that affect the filtering step itself. Of course filtering has been extensively examined in TREC Filtering \cite{robertson2002trec}. However, those studies were isolated in the sense that they were intended to optimize recall. What we have here is a different scenario. Documents have relevance rating. Thus we want to study filtering in connection to  relevance to the entities and thus can be done by coupling filtering to the later stages of the pipeline. This is new to the best of our knowledge and the TREC KBA problem setting and data-sets offer a good opportunity to examine this aspect of filtering. 
 
 
Moreover, there has not been a chance to study at this scale and/or a study into what type of documents defy filtering and why? In this paper, we conduct a manual examination of the documents that are missing and classify them into different categories. We also estimate the general upper bound of recall using the different entities profiles and choose the best profile that results in an increased over all performance as measured by F-measure. 
 
 
\section{Method}\label{sec:mthd}
 
@@ -543,25 +543,25 @@ these, 24162 unique document-entity pairs are vital (9521) or relevant
 
  All Entities    &59.0  &72.2  &79.8  &90.2\\
 
\hline
 
 
\end{tabular}
 
\end{center}
 
\label{tab:name}
 
\end{table}
 
 
 
The upper part of Table \ref{tab:name} shows the recall performances on the cleansed version and the lower part on the raw version. The recall performances for all entity types  are increased substantially in the raw version. Recall increases on Wikipedia entities  vary from 8.2 to 12.8, and in Twitter entities from 6.8 to 26.2. In all entities, it ranges from 8.0 to 13.6.  The recall increases are substantial. To put it into perspective, an 11.8 increase in recall on all entities is a retrieval of 2864 more unique document-entity pairs. %This suggests that cleansing has removed some documents that we could otherwise retrieve. 
 
 
\subsection{Entity Profiles}
 
If we look at the recall performances for the raw corpus,   filtering documents by canonical names achieves a recall of  59\%.  Adding other name variants  improves the recall to 79.8\%, an increase of 20.8\%. This means  20.8\% of documents mentioned the entities by other names  rather than by their canonical names. Canonical partial  achieves a recall of 72\%  and name-variant partial achives 90.2\%. This says that 18.2\% of documents mentioned the entities by  partial names of other non-canonical name variants. 
 
If we look at the recall performances for the raw corpus,   filtering documents by canonical names achieves a recall of  59\%.  Adding other name variants  improves the recall to 79.8\%, an increase of 20.8\%. This means  20.8\% of documents mentioned the entities by other names  rather than by their canonical names. Canonical partial  achieves a recall of 72\%  and name-variant partial achieves 90.2\%. This says that 18.2\% of documents mentioned the entities by  partial names of other non-canonical name variants. 
 
 
 
%\begin{table*}
 
%\caption{Breakdown of recall percentage increases by document categories }
 
%\begin{center}\begin{tabular}{l*{9}{c}r}
 
% && \multicolumn{3}{ c| }{All entities}  & \multicolumn{3}{ c| }{Wikipedia} &\multicolumn{3}{ c| }{Twitter} \\ 
 
% & &others&news&social & others&news&social &  others&news&social \\
 
%\hline
 
% 
 
%\multirow{4}{*}{Vital}	 &cano-part $-$ cano  	&8.2  &14.9    &12.3           &9.1  &18.6   &14.1             &0      %&0       &0  \\
 
%                         &all$-$ cano         	&12.6  &19.7    &12.3          &5.5  &15.8   &8.4             &73   &35%.9    &38.3  \\
 
%	                 &all-part $-$ cano\_part&9.7    &18.7  &12.7       &0    &0.5  &5.1        &93.2 & 93 &64.4 \\%
 
@@ -778,25 +778,25 @@ Finally,  we select  the 5 most frequent n-grams for each context.
 
\paragraph*{LengthBody} Term count of document body
 
\paragraph*{LengthAnchor} Term count  of document anchor
 
  
 
\paragraph*{FirstPosNorm} 
 
  Term position of the first occurrence of the target entity in the document 
 
  body normalised by the document length 
 
\paragraph*{MentionsBody }
 
  No. of occurrences of the target entity in the  document body
 
 
 
 
  
 
  Features we use incude similarity features such as cosine and jaccard, document-entity features such as docuemnt mentions entity in title, in body, frequency  of mention, etc., and related entity features such as page rank scores. In total we sue  The features consist of similarity measures between the KB entiities profile text, document-entity features such as  
 
   
 
  In here, we present results showing how  the choices in corpus, entity types, and entity profiles impact these latest stages of the pipeline.  In tables \ref{tab:class-vital} and \ref{tab:class-vital-relevant}, we show the performances in max-F. 
 
\begin{table*}
 
\caption{vital performance under different name variants(upper part from cleansed, lower part from raw)}
 
\begin{center}
 
\begin{tabular}{ll@{\quad}lllllll}
 
\hline
 
%&\multicolumn{1}{l}{\rule{0pt}{12pt}}&\multicolumn{1}{l}{\rule{0pt}{12pt}cano}&\multicolumn{1}{l}{\rule{0pt}{12pt}canonical partial }&\multicolumn{1}{l}{\rule{0pt}{12pt}name-variant }&\multicolumn{1}{l}{\rule{0pt}{50pt}name-variant partial}\\[5pt]
 
  &&cano&cano-part&all  &all-part \\
 
 
 
   all-entities &max-F& 0.241&0.261&0.259&0.265\\
 
%	      &SU&0.259  &0.258 &0.263 &0.262 \\	
 
@@ -1003,28 +1003,28 @@ There are 3 interesting observations:
 
 
1) cleansing impacts Twitter
 
entities and relevant documents.  This  is validated by the
 
observation that recall  gains in Twitter entities and the relevant
 
categories in the raw corpus also translate into overall performance
 
gains. This observation implies that cleansing removes relevant and
 
social documents than it does vital and news. That it removes relevant
 
documents more than vital can be explained by the fact that cleansing
 
removes the related links and adverts which may contain a mention of
 
the entities. One example we saw was the the cleansing removed an
 
image with a text of an entity name which was actually relevant. And
 
that it removes social documents can be explained by the fact that
 
most of the missing of the missing  docuemnts from cleansed are
 
social. And all the docuemnts that are missing from raw corpus
 
most of the missing of the missing  documents from cleansed are
 
social. And all the documents that are missing from raw corpus
 
social. So in both cases social seem to suffer from text
 
transformation and cleasing processes. 
 
transformation and cleansing processes. 
 
 
%%%% NEEDS WORK:
 
 
Taking both performance (recall at filtering and overall F-score
 
during evaluation) into account, there is a clear trade-off between
 
using a richer entity-profile and retrieval of irrelevant
 
documents. The richer the profile, the more relevant documents it
 
retrieves, but also the more irrelevant documents. To put it into
 
perspective, lets compare the number of documents that are retrieved
 
with  canonical partial and with name-variant partial. Using the raw
 
corpus, the former retrieves a total of 2547487 documents and achieves
 
a recall of 72.2\%. By contrast, the later retrieves a total of
 
@@ -1104,25 +1104,25 @@ HTML tags and non-English documents).  In both cases the mention of the entity h
 
   
 
 
 
%%%%%%%%%%%%%%%%%%%%%%
 
 
We observed that there are vital-relevant documents that we miss from raw only, and similarly from cleansed only. The reason for this is transformation from one format to another. The most interesting documents are those that we miss from both raw and cleansed corpus. We first identified the number of KB entities who have a vital relevance judgment and  whose documents can not be retrieved (they were 35 in total) and conducted a manual examination into their content to find out why they are missing. 
 
 
 
 
 
 We  observed  that among the missing documents, different document ids can have the same content, and be judged multiple times for a given entity.  %In the vital annotation, there are 88 news, and 409 weblog. 
 
 Avoiding duplicates, we randomly selected 35 documents, one for each entity.   The documents are 13 news and  22  social. Here below we have classified the situation under which a document can be vital for an entity without mentioning the entities with the different entity  profiles we used for filtering. 
 
 
\paragraph*{Outgoing link mentions} A post (tweet) with an outgoing link which mentions the entity.
 
\paragraph*{Event place - Event} A document that talks about an event is vital to the location entity where it takes place.  For example Maha Music Festival takes place in Lewis and Clark\_Landing, and a document talking about the festival is vital for the park. There are also cases where an event's address places the event in a park and due to that the document becomes vital to the park. This is basically being mentioned by address which belongs to alarger space. 
 
\paragraph*{Event place - Event} A document that talks about an event is vital to the location entity where it takes place.  For example Maha Music Festival takes place in Lewis and Clark\_Landing, and a document talking about the festival is vital for the park. There are also cases where an event's address places the event in a park and due to that the document becomes vital to the park. This is basically being mentioned by address which belongs to a larger space. 
 
\paragraph*{Entity -related entity} A document about an important figure such as artist, athlete  can be vital to another. This is specially true if the two are contending for the same title, one has snatched a title, or award from the other. 
 
\paragraph*{Organization - main activity} A document that talks about about an area on which the company is active is vital for the organization. For example, Atacocha is a mining company  and a news item on mining waste was annotated vital. 
 
\paragraph*{Entity - group} If an entity belongs to a certain group (class),  a news item about the group can be vital for the individual members. FrankandOak is  named innovative company and a news item that talks about the group  of innovative companies is relevant for a  it. Other examples are: a  big event  of which an entity is related such an Film awards for actors. 
 
\paragraph*{Artist - work} Documents that discuss the work of artists can be relevant to the artists. Such cases include  books or films being vital for the book author or the director (actor) of the film. Robocop is film whose screenplay is by Joshua Zetumer. A blog that talks about the film was judged vital for Joshua Zetumer. 
 
\paragraph*{Politician - constituency} A major political event in a certain constituency is vital for the politician from that constituency. 
 
 A good example is a weblog that talks about two north Dakota counties being drought disasters. The news is vital for Joshua Boschee, a politician, a member of North Dakota democratic party.  
 
\paragraph*{head - organization} A document that talks about an organization of which the entity is the head can be vital for the entity.  Jasper\_Schneider is USDA Rural Development state director for North Dakota and an article about problems of primary health centers in North Dakota is judged vital for him. 
 
\paragraph*{World Knowledge} Some things are impossible to know without your world knowledge. For example ''refreshments, treats, gift shop specials, "bountiful, fresh and fabulous holiday decor," a demonstration of simple ways to create unique holiday arrangements for any home; free and open to the public`` is judged relevant to Hjemkomst\_Center. This is a social media post, and unless one knows the person posting it, there is no way that this text shows that. Similarly ''learn about the gray wolf's hunting and feeding behaviors and watch the wolves have their evening meal of a full deer carcass; $15 for members, $20 for nonmembers`` is judged vital to Red\_River\_Zoo.  
 
\paragraph*{No document content} A small number of documents were found to have no content.
 
\paragraph*{Disagreement} For a few remaining documents, the authors disagree with the assessors as to why these are vital to the entity.
 
 
0 comments (0 inline, 0 general)