Changeset - d5845a1beae8
[Not reviewed]
0 1 0
Arjen de Vries (arjen) - 11 years ago 2014-06-11 20:23:56
arjen.de.vries@cwi.nl
A few latex glitches
1 file changed with 13 insertions and 20 deletions:
0 comments (0 inline, 0 general)
mypaper-final.tex
Show inline comments
 
@@ -39,49 +39,49 @@
 
% You need the command \numberofauthors to handle the 'placement
 
% and alignment' of the authors beneath the title.
 
%
 
% For aesthetic reasons, we recommend 'three authors at a time'
 
% i.e. three 'name/affiliation blocks' be placed beneath the title.
 
%
 
% NOTE: You are NOT restricted in how many 'rows' of
 
% "name/affiliations" may appear. We just ask that you restrict
 
% the number of 'columns' to three.
 
%
 
% Because of the available 'opening page real-estate'
 
% we ask you to refrain from putting more than six authors
 
% (two rows with three columns) beneath the article title.
 
% More than six makes the first-page appear very cluttered indeed.
 
%
 
% Use the \alignauthor commands to handle the names
 
% and affiliations for an 'aesthetic maximum' of six authors.
 
% Add names, affiliations, addresses for
 
% the seventh etc. author(s) as the argument for the
 
% \additionalauthors command.
 
% These 'additional authors' will be output/set for you
 
% without further effort on your part as the last section in
 
% the body of your article BEFORE References or any Appendices.
 
 
\numberofauthors{8} %  in this sample file, there are a *total*
 
\numberofauthors{2} %  in this sample file, there are a *total*
 
% of EIGHT authors. SIX appear on the 'first-page' (for formatting
 
% reasons) and the remaining two appear in the \additionalauthors section.
 
%
 
% \author{
 
% % You can go ahead and credit any number of authors here,
 
% % e.g. one 'row of three' or two rows (consisting of one row of three
 
% % and a second row of one, two or three).
 
% %
 
% % The command \alignauthor (no curly braces needed) should
 
% % precede each author name, affiliation/snail-mail address and
 
% % e-mail address. Additionally, tag each line of
 
% % affiliation/address with \affaddr, and tag the
 
% % e-mail address with \email.
 
% %
 
% % 1st. author
 
% \alignauthor
 
% Ben Trovato\titlenote{Dr.~Trovato insisted his name be first.}\\
 
%        \affaddr{Institute for Clarity in Documentation}\\
 
%        \affaddr{1932 Wallamaloo Lane}\\
 
%        \affaddr{Wallamaloo, New Zealand}\\
 
%        \email{trovato@corporation.com}
 
% % 2nd. author
 
% \alignauthor
 
% G.K.M. Tobin\titlenote{The secretary disavows
 
@@ -665,75 +665,68 @@ In vital ranking, across all entity profiles and types of corpus, Wikipedia's ca
 
 
 
There are 3 interesting observations: 1) cleansing impacts Twitter entities and relevant documents.  This  is validated by the observation that recall  gains in Twitter entities and the relevant categories in the raw corpus also translate into overall performance gains. This observation implies that cleansing removes relevant and social documents than it does vital and news. That it removes relevant documents more than vital can be explained by the fact that cleansing removes the related links and adverts which may contain a mention of the entities. One example we saw was the the cleansing removed an image with a text of an entity name which was actually relevant. And that it removes social documents can be explained by the fact that most of the missing of the missing  docuemnts from cleansed are social. And all the docuemnts that are missing from raw corpus social. So in both cases socuial seem to suffer from text transformation and cleasing processes. 2) Taking both performance (recall at filtering and overall F-score during evaluation) into account, Wikipedia's canonical partial is the best entity profile for Wikipedia entities. This is interesting  to see that the retrieval of of  thousands vital-relevant document-entity pairs by name-variant partial does not translate to an increase in over all performance. It is even more interesting since canonical partial was not considered as contending profile for stream filtering by any of participant to the best of our knowledge. With this understanding, there  is actually no need to go and fetch different names variants from DBpedia, a saving of time and computational resources.
 
 
The deltas between entity profiles, relevance ratings, and document categories reveal four differences between Wikipedia and Twitter entities. 1) For Wikipedia entities, the difference between canonical partial and canonical is higher(16.1\%) than between name-variant partial and  name-variant(18.3\%).  This can be explained by saturation. This is to mean that documents have already been extracted by  name-variants and thus using their partials does not bring in many new relevant documents.  2) Twitter entities are mentioned by name-variant or name-variant partial and that is seen in the high recall achieved  compared to the low recall achieved by canonical(or their partial). This indicates that documents (specially news and others) almost never use user names to refer to Twitter entities. Name-variant partials are the best entity profiles for Twitter entities. 3) However, comparatively speaking, social documents refer to Twitter entities by their user names than news and others suggesting a difference in adherence to standard in names and naming. 4) Wikipedia entities achieve higher recall and higher overall performance. 
 
 
The high recall and subsequent higher overall performance of Wikipedia entities can  be due to two reasons. 1) Wikipedia entities are relatively well described than Twitter entities. The fact that we can retrieve different name variants from DBpedia is a measure of relatively rich description. Rich description plays a role in both filtering and computation of features such as similarity measures in later stages of the pipeline.   By contrast, we have only two names for Twitter entities: their user names and their display names which we collect from their Twitter pages. 2) There is not DBpedia-like resource for Twitter entities from which alternative names cane be collected.   
 
 
 
In the experimental results, we also observed that recall scores in the vital category are higher than in the relevant category. This observation  confirms one commonly held assumption:(frequency) mention is related to relevance.  this is the assumption why term frequency is used an indicator of document relevance in many information retrieval systems. The more  a document mentions an entity explicitly by name, the more likely the document is vital to the entity.
 
 
Across document categories, we observe a pattern in recall of others, followed by news, and then by social. Social documents are the hardest to retrieve. This can be explained by the fact that social documents (tweets and  blogs) are more likely to point to a resource where the entity is mentioned, mention the entities with some short abbreviation, or talk without mentioning the entities, but with some context in mind. By contrast news documents mention the entities they talk about using the common name variants more than social documents do. However, the greater difference in percentage recall between the different entity profiles in the news category indicates news refer to a given entity with different names, rather than by one standard name. By contrast others show least variation in referring to news. Social documents falls in between the two.  The deltas, for Wikipedia entities, between canonical partials and canonicals,  and name-variants and canonicals are high, an indication that canonical partials and name-variants bring in new relevant documents that can not be retrieved by canonicals. The rest of the two deltas are very small,  suggesting that partial names of name variants do not bring in new relevant documents. 
 
 
 
\section{Unfilterable documents}
 
There is a trade-off between using a richer entity-profile and retrieval of irrelevant documents. The richer the profile, the more relevant documents it retrieves, but also the more irrelevant documents. To put it into perspective, lets compare the number of documents that are retrieved with  canonical partial and with name-variant partial. Using the raw corpus, the former retrieves a total of 2547487 documents and achieves a recall of 72.2\%. By contrast, the later retrieves a total of 4735318 documents and achieves a recall of 90.2\%. The total number of documents extracted increases by 85.9\% for a recall gain of 18\%. The rest of the documents, that is 67.9\%, are newly introduced irrelevant documents. 
 
 
% 
 
 
 We observed that there are vital-relevant documents that we miss from raw only, and similarly from cleansed only. The reason for this is transformation from one format to another. The most interesting documents are those that we miss from both raw and cleansed corpus. We first identified the number of KB entities who have a vital relevance judgment and  whose documents can not be retrieved (they were 35 in total) and conducted a manual examination into their content to find out why they are missing. 
 
 
 
 
 
 We  observed  that among the missing documents, different document ids can have the same content, and be judged multiple times for a given entity.  %In the vital annotation, there are 88 news, and 409 weblog. 
 
 Avoiding duplicates, we randomly selected 35 documents, one for each entity.   The documents are 13 news and  22  social. Here below we have classified the situation under which a document can be vital for an entity without mentioning the entities with the different entity  profiles we used for filtering. 
 
\paragraph{Outgoing link mentions} A post (tweet) with an outgoing link which mentions the entity.
 
\paragraph{Event place - Event} A document that talks about an event is vital to the location entity where it takes place.  For example Maha Music Festival takes place in Lewis and Clark\_Landing, and a document talking about the festival is vital for the park. There are also cases where an event's address places the event in a park and due to that the document becomes vital to the park. This is basically being mentioned by address which belongs to alarger space. 
 
\paragraph{Entity -related entity} A document about an important figure such as artist, athlete  can be vital to another. This is specially true if the two are contending for the same title, one has snatched a title, or award from the other. 
 
\paragraph{Organization - main activity} A document that talks about about an area on which the company is active is vital for the organization. For example, Atacocha is a mining company  and a news item on mining waste was annotated vital. 
 
\paragraph{Entity - group} If an entity belongs to a certain group (class),  a news item about the group can be vital for the individual members. FrankandOak is  named innovative company and a news item that talks about the group  of innovative companies is relevant for a  it. Other examples are: a  big event  of which an entity is related such an Film awards for actors. 
 
\paragraph{Artist - work} Documents that discuss the work of artists can be relevant to the artists. Such cases include  books or films being vital for the book author or the director (actor) of the film. Robocop is film whose screenplay is by Joshua Zetumer. A blog that talks about the film was judged vital for Joshua Zetumer. 
 
\paragraph{Politician - constituency} A major political event in a certain constituency is vital for the politician from that constituency. 
 
\paragraph*{Outgoing link mentions} A post (tweet) with an outgoing link which mentions the entity.
 
\paragraph*{Event place - Event} A document that talks about an event is vital to the location entity where it takes place.  For example Maha Music Festival takes place in Lewis and Clark\_Landing, and a document talking about the festival is vital for the park. There are also cases where an event's address places the event in a park and due to that the document becomes vital to the park. This is basically being mentioned by address which belongs to alarger space. 
 
\paragraph*{Entity -related entity} A document about an important figure such as artist, athlete  can be vital to another. This is specially true if the two are contending for the same title, one has snatched a title, or award from the other. 
 
\paragraph*{Organization - main activity} A document that talks about about an area on which the company is active is vital for the organization. For example, Atacocha is a mining company  and a news item on mining waste was annotated vital. 
 
\paragraph*{Entity - group} If an entity belongs to a certain group (class),  a news item about the group can be vital for the individual members. FrankandOak is  named innovative company and a news item that talks about the group  of innovative companies is relevant for a  it. Other examples are: a  big event  of which an entity is related such an Film awards for actors. 
 
\paragraph*{Artist - work} Documents that discuss the work of artists can be relevant to the artists. Such cases include  books or films being vital for the book author or the director (actor) of the film. Robocop is film whose screenplay is by Joshua Zetumer. A blog that talks about the film was judged vital for Joshua Zetumer. 
 
\paragraph*{Politician - constituency} A major political event in a certain constituency is vital for the politician from that constituency. 
 
 A good example is a weblog that talks about two north Dakota counties being drought disasters. The news is vital for Joshua Boschee, a politician, a member of North Dakota democratic party.  
 
\paragraph{head - organization} A document that talks about an organization of which the entity is the head can be vital for the entity.  Jasper\_Schneider is USDA Rural Development state director for North Dakota and an article about problems of primary health centers in North Dakota is judged vital for him. 
 
\paragraph{World Knowledge} Some things are impossible to know without your world knowledge. For example ''refreshments, treats, gift shop specials, "bountiful, fresh and fabulous holiday decor," a demonstration of simple ways to create unique holiday arrangements for any home; free and open to the public`` is judged relevant to Hjemkomst\_Center. This is a social media post, and unless one knows the person posting it, there is no way that this text shows that. Similarly ''learn about the gray wolf's hunting and feeding behaviors and watch the wolves have their evening meal of a full deer carcass; $15 for members, $20 for nonmembers`` is judged vital to Red\_River\_Zoo.  
 
\paragraph{No document content} Some documents were found to have no content
 
\paragraph{Not clear why} It is not clear why some documents are annotated vital for some entities.
 
 
 
 
 
 
  
 
 
 
\paragraph*{head - organization} A document that talks about an organization of which the entity is the head can be vital for the entity.  Jasper\_Schneider is USDA Rural Development state director for North Dakota and an article about problems of primary health centers in North Dakota is judged vital for him. 
 
\paragraph*{World Knowledge} Some things are impossible to know without your world knowledge. For example ''refreshments, treats, gift shop specials, "bountiful, fresh and fabulous holiday decor," a demonstration of simple ways to create unique holiday arrangements for any home; free and open to the public`` is judged relevant to Hjemkomst\_Center. This is a social media post, and unless one knows the person posting it, there is no way that this text shows that. Similarly ''learn about the gray wolf's hunting and feeding behaviors and watch the wolves have their evening meal of a full deer carcass; $15 for members, $20 for nonmembers`` is judged vital to Red\_River\_Zoo.  
 
\paragraph*{No document content} Some documents were found to have no content
 
\paragraph*{Unclear} It is not clear why some documents are annotated
 
vital for some entities.
 
 
 
\section{Conclusions}
 
In this paper, we examined the filtering stage of the entity-centric stream filtering and ranking  by holding the later stages of fixed. In particular, we studied the cleansing step, different entity profiles, type of entities(Wikipedia or Twitter), categories of documents(news, social, or others) and the relevance ratings. We attempted to address the following research questions: 1) does cleansing affect filtering and subsequent performance? 2) what is the most effective way of entity profiling? 3) is filtering different for Wikipedia and Twitter entities? 4) are some type of documents easily filterable and others not? 5) does a gain in recall at filtering step translate to a gain in F-measure at the end of the pipeline? and 6) what are the circumstances under which vital documents can not be retrieved? 
 
 
Cleansing does remove parts or entire contents of documents making them irretrievable. However, because of the introduction of false positives, recall gains by  raw corpus and some  richer entity profiles do not necessarily translate to overall performance gain. The results conclusion on this is mixed in the sense that cleansing helps improve the recall on vital documents and Wikipedia entities, but reduces the recall on Twitter entities and the relative category of relevance ranking. Vital and relevant documents show a difference in retrieval nonperformance documents are easier to filter than relevant.  
 
 
 
Despite an aggressive attempt to filter as many vital-relevant documents as possible,  we observe that there are still documents that we miss. While some are possible to retrieve with some modifications, some others are not. There are some document that indicate that an information filtering system does not seem to get them no matter how rich representation of entities they use. These circumstances under which this happens are many. We found that some documents have no content at all, subjectivity(it is not clear why some are judged vital). However, the main circumstances under which vital  documents can defy filtering is: outgoing link mentions, 
 
venue-event, entity - related entity, organization - main area of operation, entity - group, artist - artist's work,  party-politician, and world knowledge.  
 
 
 
%ACKNOWLEDGMENTS are optional
 
%\section{Acknowledgments}
 
 
%
 
% The following two commands are all you need in the
 
% initial runs of your .tex file to
 
% produce the bibliography for the citations in your paper.
 
\bibliographystyle{abbrv}
 
\bibliography{sigproc}  % sigproc.bib is the name of the Bibliography in this case
 
% You must have a proper ".bib" file
 
%  and remember to run:
 
% latex bibtex latex latex
 
% to resolve all references
 
%
 
% ACM needs 'a single self-contained file'!
 
%
 
%APPENDICES are optional
 
%\balancecolumns
 
 
0 comments (0 inline, 0 general)