Files
@ 18051291335b
Branch filter:
Location: HCDA/sigir2016repo/pipe.R - annotation
18051291335b
2.9 KiB
text/S-plus
update
1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 1a971586dc42 | colnames(i_r_v_c_cat) <-c("base", "reco", "view", "click", "base_cat", "reco_cat")
Filter columns of interest
i_r_v_c_cat <- i_r_v_c_cat[i_r_v_c_cat$base_cat %in% fil,]
i_r_v_c_cat <- i_r_v_c_cat[i_r_v_c_cat$reco_cat %in% fil,]
#Add a ctr columns
i_r_v_c_cat$ctr <- round(i_r_v_c_cat$click*100/i_r_v_c_cat$view, 2)
#filter out items whose ctr score is greater than 1
i_r_v_c_cat<- i_r_v_c_cat[i_r_v_c_cat$ctr<100.0, ]
#Compute the base category, recommendation category ctr heat map
cat_base_reco <-i_r_v_c_cat[, c("base_cat","reco_cat","view","click")]
cat_base_reco<-aggregate(. ~base_cat+reco_cat, data=cat_base_reco, FUN=sum)
cat_base_reco$ctr <- round(cat_base_reco$click*100/cat_base_reco$view,2)
resultsMatrix <- matrix(0, length(fil), length(fil))
fil ->colnames(resultsMatrix) ->rownames(resultsMatrix)
for (i in 1:100){
resultsMatrix[as.vector(cat_base_reco[["base_cat"]][i]), as.vector(cat_base_reco[["reco_cat"]][i])] <-as.vector(cat_base_reco[["ctr"]][i])
}
write.table(resultsMatrix, file="../data/sigir2016short/output/category_heat_map.txt", sep="&")
#Compute Base category ctr
cat_base<-aggregate(. ~base_cat, data=cat_base_reco, FUN=sum)
cat_base$ctr <- round(cat_base$click*100/cat_base$view,2)
write.table(cat_base, file="../data/sigir2016short/output/category_ctr.txt", sep="&")
#Compute base item recommendation item ctr
i=250
top_base_reco <- merge(i_r_v_c_cat[order(-i_r_v_c_cat$view),][1:i,], i_r_v_c_cat[order(-i_r_v_c_cat$click),][1:i,], by =c("base","reco"), all=F)
top_base_reco <- top_base_reco[, c("base","reco","view.x","click.x","base_cat.x","reco_cat.x","ctr.x")]
write.table(top_base_reco, file="../data/sigir2016short/output/top_base_reco.txt", sep="&")
i=4800
bot_base_reco <- merge(i_r_v_c_cat[order(-i_r_v_c_cat$view),][1:i,], i_r_v_c_cat[order(i_r_v_c_cat$click),][1:i,], by =c("base","reco"), all=F)
bot_base_reco <- bot_base_reco[, c("base","reco","view.x","click.x","base_cat.x","reco_cat.x","ctr.x")]
write.table(bot_base_reco, file="../data/sigir2016short/output/bot_base_reco.txt", sep="&")
#Compute Base item ctr
i=72
i_v_c_cat<-i_r_v_c_cat[, c("base", "base_cat","view","click"),]
i_v_c_cat <-aggregate(. ~base+base_cat, data=i_v_c_cat, FUN=sum)
i_v_c_cat$ctr<-round(i_v_c_cat$click*100/i_v_c_cat$view, 2)
top_base <- merge(i_v_c_cat[order(-i_v_c_cat$view),][1:i,], i_v_c_cat[order(-i_v_c_cat$click),][1:i,], by =c("base","base_cat"), all=F)
top_base <-top_base[, c("base","base_cat","view.x","click.x", "ctr.x")]
write.table(top_base, file="../data/sigir2016short/output/top_base.txt", sep="&")
#Bottom scoring political items
i=600
i_v_c_cat <- i_v_c_cat[i_v_c_cat$base_cat=="politik", ]
bot_base <- merge(i_v_c_cat[order(-i_v_c_cat$view),][1:i,], i_v_c_cat[order(i_v_c_cat$click),][1:i,], by =c("base","base_cat"), all=F)
bot_base <-bot_base[, c("base","base_cat","view.x","click.x", "ctr.x")]
write.table(bot_base, file="../data/sigir2016short/output/bot_base.txt", sep="&")
|