Files
@ 215974bd7440
Branch filter:
Location: MD/arcos/fish90/src/gnbnaux.f90 - annotation
215974bd7440
13.9 KiB
text/x-fortran
Edited file README via RhodeCode
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf | !
! file gnbnaux.f
!
!
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
! . .
! . copyright (c) 2004 by UCAR .
! . .
! . UNIVERSITY CORPORATION for ATMOSPHERIC RESEARCH .
! . .
! . all rights reserved .
! . .
! . .
! . FISHPACK version 5.0 .
! . .
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
! * *
! * F I S H P A C K *
! * *
! * *
! * A PACKAGE OF FORTRAN SUBPROGRAMS FOR THE SOLUTION OF *
! * *
! * SEPARABLE ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS *
! * *
! * (Version 5.0 , JUNE 2004) *
! * *
! * BY *
! * *
! * JOHN ADAMS, PAUL SWARZTRAUBER AND ROLAND SWEET *
! * *
! * OF *
! * *
! * THE NATIONAL CENTER FOR ATMOSPHERIC RESEARCH *
! * *
! * BOULDER, COLORADO (80307) U.S.A. *
! * *
! * WHICH IS SPONSORED BY *
! * *
! * THE NATIONAL SCIENCE FOUNDATION *
! * *
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
!
!
! PACKAGE GNBNAUX
!
! LATEST REVISION June 2004
!
! PURPOSE TO PROVIDE AUXILIARY ROUTINES FOR FISHPACK
! ENTRIES GENBUN AND POISTG.
!
! USAGE THERE ARE NO USER ENTRIES IN THIS PACKAGE.
! THE ROUTINES IN THIS PACKAGE ARE NOT INTENDED
! TO BE CALLED BY USERS, BUT RATHER BY ROUTINES
! IN PACKAGES GENBUN AND POISTG.
!
! SPECIAL CONDITIONS NONE
!
! I/O NONE
!
! PRECISION SINGLE
!
!
! LANGUAGE FORTRAN 90
!
! HISTORY WRITTEN IN 1979 BY ROLAND SWEET OF NCAR'S
! SCIENTIFIC COMPUTING DIVISION. MADE AVAILABLE
! ON NCAR'S PUBLIC LIBRARIES IN JANUARY, 1980.
! Revised by John Adams in June 2004 incorporating
! Fortran 90 features
!
! PORTABILITY FORTRAN 90
! ********************************************************************
SUBROUTINE COSGEN(N, IJUMP, FNUM, FDEN, vecA, IA)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: N, IJUMP, IA
DOUBLE PRECISION, INTENT(IN) :: FNUM, FDEN
DOUBLE PRECISION, DIMENSION(IA),INTENT(OUT) :: vecA
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: K3, K4, K, K1, K5, I, K2, NP1
DOUBLE PRECISION :: PI, PIBYN, X, Y
!-----------------------------------------------
!
!
! THIS SUBROUTINE COMPUTES REQUIRED COSINE VALUES IN ASCENDING
! ORDER. WHEN IJUMP .GT. 1 THE ROUTINE COMPUTES VALUES
!
! 2*COS(J*PI/L) , J=1,2,...,L AND J .NE. 0(MOD N/IJUMP+1)
!
! WHERE L = IJUMP*(N/IJUMP+1).
!
!
! WHEN IJUMP = 1 IT COMPUTES
!
! 2*COS((J-FNUM)*PI/(N+FDEN)) , J=1, 2, ... ,N
!
! WHERE
! FNUM = 0.5, FDEN = 0.0, FOR REGULAR REDUCTION VALUES
! FNUM = 0.0, FDEN = 1.0, FOR B-R AND C-R WHEN ISTAG = 1
! FNUM = 0.0, FDEN = 0.5, FOR B-R AND C-R WHEN ISTAG = 2
! FNUM = 0.5, FDEN = 0.5, FOR B-R AND C-R WHEN ISTAG = 2
! IN POISN2 ONLY.
!
!
PI = 4.0*ATAN(1.0)
IF (N /= 0) THEN
IF (IJUMP /= 1) THEN
K3 = N/IJUMP + 1
K4 = K3 - 1
PIBYN = PI/FLOAT(N + IJUMP)
DO K = 1, IJUMP
K1 = (K - 1)*K3
K5 = (K - 1)*K4
DO I = 1, K4
X = K1 + I
K2 = K5 + I
vecA(K2) = -2.*COS(X*PIBYN)
END DO
END DO
ELSE
NP1 = N + 1
Y = PI/(FLOAT(N) + FDEN)
DO I = 1, N
X = FLOAT(NP1 - I) - FNUM
vecA(I) = 2.*COS(X*Y)
END DO
ENDIF
ENDIF
!
END SUBROUTINE COSGEN
SUBROUTINE MERGE(TCOS, I1, M1, I2, M2, I3, itcos)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: I1, M1, I2, M2, I3, ITCOS
DOUBLE PRECISION, DIMENSION(ITCOS), INTENT(INOUT) :: TCOS
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: J11, J3, J1, J2, J, L, K, M
DOUBLE PRECISION :: X, Y
!-----------------------------------------------
!
! THIS SUBROUTINE MERGES TWO ASCENDING STRINGS OF NUMBERS IN THE
! ARRAY TCOS. THE FIRST STRING IS OF LENGTH M1 AND STARTS AT
! TCOS(I1+1). THE SECOND STRING IS OF LENGTH M2 AND STARTS AT
! TCOS(I2+1). THE MERGED STRING GOES INTO TCOS(I3+1).
!
!
J1 = 1
J2 = 1
J = I3
IF (M1 == 0) GO TO 107
IF (M2 == 0) GO TO 104
101 CONTINUE
J11 = J1
J3 = MAX(M1,J11)
DO J1 = J11, J3
J = J + 1
L = J1 + I1
X = TCOS(L)
L = J2 + I2
Y = TCOS(L)
IF (X - Y > 0.) GO TO 103
TCOS(J) = X
END DO
GO TO 106
103 CONTINUE
TCOS(J) = Y
J2 = J2 + 1
IF (J2 <= M2) GO TO 101
IF (J1 > M1) GO TO 109
104 CONTINUE
K = J - J1 + 1
DO J = J1, M1
M = K + J
L = J + I1
TCOS(M) = TCOS(L)
END DO
GO TO 109
106 CONTINUE
IF (J2 > M2) GO TO 109
107 CONTINUE
K = J - J2 + 1
DO J = J2, M2
M = K + J
L = J + I2
TCOS(M) = TCOS(L)
END DO
109 CONTINUE
!
END SUBROUTINE MERGE
SUBROUTINE TRIX(IDEGBR, IDEGCR, M, vecA, vecB, vecC, vecY, TCOS, ITCOS, &
vecD, vecW)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: IDEGBR, IDEGCR, M, ITCOS
DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA, vecB, vecC
DOUBLE PRECISION, DIMENSION(ITCOS), INTENT(IN) :: TCOS
DOUBLE PRECISION, DIMENSION(M), INTENT(INOUT) :: vecY, vecD, vecW
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: MM1, IFB, IFC, L, LINT, K, I, IP
DOUBLE PRECISION :: X, XX, Z
!-----------------------------------------------
!
! SUBROUTINE TO SOLVE A SYSTEM OF LINEAR EQUATIONS WHERE THE
! COEFFICIENT MATRIX IS A RATIONAL FUNCTION IN THE MATRIX GIVEN BY
! TRIDIAGONAL ( . . . , vecA(I), vecB(I), vecC(I), . . . ).
!
MM1 = M - 1
IFB = IDEGBR + 1
IFC = IDEGCR + 1
L = IFB/IFC
LINT = 1
DO K = 1, IDEGBR
X = TCOS(K)
IF (K == L) THEN
I = IDEGBR + LINT
XX = X - TCOS(I)
vecW(:M) = vecY(:M)
vecY(:M) = XX*vecY(:M)
ENDIF
Z = 1./(vecB(1)-X)
vecD(1) = vecC(1)*Z
vecY(1) = vecY(1)*Z
DO I = 2, MM1
Z = 1./(vecB(I)-X-vecA(I)*vecD(I-1))
vecD(I) = vecC(I)*Z
vecY(I) = (vecY(I)-vecA(I)*vecY(I-1))*Z
END DO
Z = vecB(M) - X - vecA(M)*vecD(MM1)
IF (Z == 0.) THEN
vecY(M) = 0.
ELSE
vecY(M) = (vecY(M)-vecA(M)*vecY(MM1))/Z
ENDIF
DO IP = 1, MM1
vecY(M-IP) = vecY(M-IP) - vecD(M-IP)*vecY(M+1-IP)
END DO
IF (K /= L) CYCLE
vecY(:M) = vecY(:M) + vecW(:M)
LINT = LINT + 1
L = (LINT*IFB)/IFC
END DO
!
END SUBROUTINE TRIX
SUBROUTINE TRI3(M, vecA, vecB, vecC, ivecK, vecY1, vecY2, vecY3, TCOS, &
ITCOS, vecD, vecW1, vecW2, vecW3)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: M,ITCOS
INTEGER, DIMENSION(4),INTENT(IN) :: ivecK
DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA, vecB, vecC
DOUBLE PRECISION, DIMENSION(ITCOS), INTENT(IN) :: TCOS
DOUBLE PRECISION, DIMENSION(M), INTENT(INOUT) :: vecY1, vecY2, vecY3, &
vecD, vecW1, vecW2, vecW3
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: MM1, K1, K2, K3, K4, IF1, IF2, IF3, IF4, K2K3K4, &
L1, L2, L3, LINT1, LINT2, LINT3, KINT1, KINT2, KINT3, &
N, I, IP
DOUBLE PRECISION :: X, Z, XX
!-----------------------------------------------
!
! SUBROUTINE TO SOLVE THREE LINEAR SYSTEMS WHOSE COMMON COEFFICIENT
! MATRIX IS A RATIONAL FUNCTION IN THE MATRIX GIVEN BY
!
! TRIDIAGONAL (...,vecA(I),vecB(I),vecC(I),...)
!
MM1 = M - 1
K1 = ivecK(1)
K2 = ivecK(2)
K3 = ivecK(3)
K4 = ivecK(4)
IF1 = K1 + 1
IF2 = K2 + 1
IF3 = K3 + 1
IF4 = K4 + 1
K2K3K4 = K2 + K3 + K4
IF (K2K3K4 /= 0) THEN
L1 = IF1/IF2
L2 = IF1/IF3
L3 = IF1/IF4
LINT1 = 1
LINT2 = 1
LINT3 = 1
KINT1 = K1
KINT2 = KINT1 + K2
KINT3 = KINT2 + K3
ELSE
write(*,*) 'warning tri3: l1,l2,l3,kint1,kint2,kint3 uninitialized'
stop 'stop in tri3: l1,l2,l3,kint1,kint2,kint3 uninitialized'
ENDIF
DO N = 1, K1
X = TCOS(N)
IF (K2K3K4 /= 0) THEN
IF (N == L1) THEN
vecW1(:M) = vecY1(:M)
ENDIF
IF (N == L2) THEN
vecW2(:M) = vecY2(:M)
ENDIF
IF (N == L3) THEN
vecW3(:M) = vecY3(:M)
ENDIF
ENDIF
Z = 1./(vecB(1)-X)
vecD(1) = vecC(1)*Z
vecY1(1) = vecY1(1)*Z
vecY2(1) = vecY2(1)*Z
vecY3(1) = vecY3(1)*Z
DO I = 2, M
Z = 1./(vecB(I)-X-vecA(I)*vecD(I-1))
vecD(I) = vecC(I)*Z
vecY1(I) = (vecY1(I)-vecA(I)*vecY1(I-1))*Z
vecY2(I) = (vecY2(I)-vecA(I)*vecY2(I-1))*Z
vecY3(I) = (vecY3(I)-vecA(I)*vecY3(I-1))*Z
END DO
DO IP = 1, MM1
vecY1(M-IP) = vecY1(M-IP) - vecD(M-IP)*vecY1(M+1-IP)
vecY2(M-IP) = vecY2(M-IP) - vecD(M-IP)*vecY2(M+1-IP)
vecY3(M-IP) = vecY3(M-IP) - vecD(M-IP)*vecY3(M+1-IP)
END DO
IF (K2K3K4 == 0) CYCLE
IF (N == L1) THEN
I = LINT1 + KINT1
XX = X - TCOS(I)
vecY1(:M) = XX*vecY1(:M) + vecW1(:M)
LINT1 = LINT1 + 1
L1 = (LINT1*IF1)/IF2
ENDIF
IF (N == L2) THEN
I = LINT2 + KINT2
XX = X - TCOS(I)
vecY2(:M) = XX*vecY2(:M) + vecW2(:M)
LINT2 = LINT2 + 1
L2 = (LINT2*IF1)/IF3
ENDIF
IF (N /= L3) CYCLE
I = LINT3 + KINT3
XX = X - TCOS(I)
vecY3(:M) = XX*vecY3(:M) + vecW3(:M)
LINT3 = LINT3 + 1
L3 = (LINT3*IF1)/IF4
END DO
RETURN
!
! REVISION HISTORY---
!
! SEPTEMBER 1973 VERSION 1
! APRIL 1976 VERSION 2
! JANUARY 1978 VERSION 3
! DECEMBER 1979 VERSION 3.1
! OCTOBER 1980 CHANGED SEVERAL DIVIDES OF FLOATING INTEGERS
! TO INTEGER DIVIDES TO ACCOMODATE CRAY-1 ARITHMETIC.
! FEBRUARY 1985 DOCUMENTATION UPGRADE
! NOVEMBER 1988 VERSION 3.2, FORTRAN 77 CHANGES
!-----------------------------------------------------------------------
END SUBROUTINE TRI3
|