Files
@ a1222c33f175
Branch filter:
Location: MD/arcos/fish90/src/poisson.f90 - annotation
a1222c33f175
21.2 KiB
text/x-fortran
Edited file README via RhodeCode
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf d6faa5ffcedf | SUBROUTINE POISTGG(NPEROD,N,MPEROD,M,vecA,vecB,vecC,IDIMY,matY, &
IERROR,W,IW)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: NPEROD, N, MPEROD, M, IDIMY,IW
INTEGER, INTENT(OUT) :: IERROR
DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA,vecB,vecC
DOUBLE PRECISION, DIMENSION(IDIMY,N),INTENT(INOUT) :: matY
DOUBLE PRECISION, DIMENSION(IW) :: W
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER :: IWBA, IWBB, IWBC, IWB2, IWB3, IWW1, IWW2, IWW3, &
IWD,IWTCOS, IWP, I, K, J, NP, MP, IPSTOR, &
IREV, MH, MHM1, MODD, NBY2, MSKIP
DOUBLE PRECISION :: A1
!-----------------------------------------------
IERROR = 0
IWBA = M + 1
IWBB = IWBA + M
IWBC = IWBB + M
IWB2 = IWBC + M
IWB3 = IWB2 + M
IWW1 = IWB3 + M
IWW2 = IWW1 + M
IWW3 = IWW2 + M
IWD = IWW3 + M
IWTCOS = IWD + M
IWP = IWTCOS + 4*N
DO I = 1, M
K = IWBA + I - 1
! write(*,*) '0: i,k:',i,k
! write(*,*) '0: vecA(I):',vecA(I)
W(K) = -vecA(I)
! write(*,*) 'A: i,k,w(k):',i,k,w(k)
K = IWBC + I - 1
W(K) = -vecC(I)
! write(*,*) 'B: i,k,w(k):',i,k,w(k)
K = IWBB + I - 1
W(K) = TWO - vecB(I)
! write(*,*) 'C: i,k,w(k):',i,k,w(k)
matY(I,:N) = -matY(I,:N)
! write(*,*) 'D: Y(i,:N):',Y(I,:N)
END DO
NP = NPEROD
MP = MPEROD + 1
GO TO (110,107) MP
107 CONTINUE
GO TO (108,108,108,119) NPEROD
108 CONTINUE
CALL POSTG2 (NP, N, M, W(IWBA:IWBA+M-1), W(IWBB:IWBB+M-1), &
W(IWBC:IWBC+M-1), IDIMY, matY, W(1:M), W(IWB2:IWB2+M-1), &
W(IWB3:IWB3+M-1), W(IWW1:IWW1+M-1), W(IWW2:IWW2+M-1), &
W(IWW3:IWW3+M-1), W(IWD:IWD+M-1), W(IWTCOS:IWTCOS+4*N-1), &
W(IWP:),IW-IWP)
IPSTOR = W(IWW1)
IREV = 2
IF (NPEROD == 4) GO TO 120
109 CONTINUE
GO TO (123,129) MP
110 CONTINUE
MH = (M + 1)/2
MHM1 = MH - 1
MODD = 1
IF (MH*2 == M) MODD = 2
DO J = 1, N
DO I = 1, MHM1
W(I) = matY(MH-I,J) - matY(I+MH,J)
W(I+MH) = matY(MH-I,J) + matY(I+MH,J)
END DO
W(MH) = TWO*matY(MH,J)
GO TO (113,112) MODD
112 CONTINUE
W(M) = TWO*matY(M,J)
113 CONTINUE
matY(:M,J) = W(:M)
END DO
K = IWBC + MHM1 - 1
I = IWBA + MHM1
W(K) = 0.
W(I) = 0.
W(K+1) = TWO*W(K+1)
SELECT CASE (MODD)
CASE DEFAULT
K = IWBB + MHM1 - 1
W(K) = W(K) - W(I-1)
W(IWBC-1) = W(IWBC-1) + W(IWBB-1)
CASE (2)
W(IWBB-1) = W(K+1)
END SELECT
GO TO 107
119 CONTINUE
IREV = 1
NBY2 = N/2
NP = 2
120 CONTINUE
DO J = 1, NBY2
MSKIP = N + 1 - J
DO I = 1, M
A1 = matY(I,J)
matY(I,J) = matY(I,MSKIP)
matY(I,MSKIP) = A1
END DO
END DO
GO TO (108,109) IREV
123 CONTINUE
DO J = 1, N
W(MH-1:MH-MHM1:(-1)) = HALF*(matY(MH+1:MHM1+MH,J)+matY(:MHM1,J))
W(MH+1:MHM1+MH) = HALF*(matY(MH+1:MHM1+MH,J)-matY(:MHM1,J))
W(MH) = HALF*matY(MH,J)
GO TO (126,125) MODD
125 CONTINUE
W(M) = HALF*matY(M,J)
126 CONTINUE
matY(:M,J) = W(:M)
END DO
129 CONTINUE
W(1) = IPSTOR + IWP - 1
!
END SUBROUTINE POISTGG
SUBROUTINE POSTG2(NPEROD, N, M, vecA, vecBB, vecC, IDIMQ, matQ, &
vecB, vecB2, vecB3, vecW,vecW2, vecW3, vecD, &
TCOS, vecP,IvecP)
implicit none
DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
ONE = 1.0D0, TWO = 2.0D0, &
FOUR = 4.0D0
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER , INTENT(IN) :: NPEROD,N,M,IDIMQ,IvecP
DOUBLE PRECISION, DIMENSION(M),INTENT(IN) :: vecA,vecBB,vecC
DOUBLE PRECISION, DIMENSION(M),INTENT(OUT) :: vecB
DOUBLE PRECISION, DIMENSION(IDIMQ,N),INTENT(INOUT) :: matQ
DOUBLE PRECISION, DIMENSION(M),INTENT(INOUT) :: vecB2,vecB3,vecD, &
vecW2,vecW3, vecW
DOUBLE PRECISION, DIMENSION(IvecP),INTENT(INOUT) :: vecP
DOUBLE PRECISION, DIMENSION(4*N),INTENT(INOUT) :: TCOS
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
INTEGER, DIMENSION(4) :: K
INTEGER :: K1, K2, K3, K4, NP, MR, IP, IPSTOR, I2R, JR, NR, NLAST, &
KR, LR, NROD, JSTART, JSTOP, I2RBY2, &
J, IJUMP, JP1, JP2, JP3, JM1, JM2, JM3, I, NRODPR, II, &
NLASTP, JSTEP
DOUBLE PRECISION :: FNUM, FNUM2, FI, T
!-----------------------------------------------
!
! SUBROUTINE TO SOLVE POISSON'S EQUATION ON A STAGGERED GRID.
!
EQUIVALENCE (K(1), K1), (K(2), K2), (K(3), K3), (K(4), K4)
NP = NPEROD
FNUM = HALF*DBLE(NP/3)
FNUM2 = HALF*DBLE(NP/2)
MR = M
IP = -MR
IPSTOR = 0
I2R = 1
JR = 2
NR = N
NLAST = N
KR = 1
LR = 0
IF (NR > 3) THEN
101 CONTINUE
JR = 2*I2R
NROD = 1
IF ((NR/2)*2 == NR) NROD = 0
JSTART = 1
JSTOP = NLAST - JR
IF (NROD == 0) JSTOP = JSTOP - I2R
I2RBY2 = I2R/2
IF (JSTOP < JSTART) THEN
J = JR
ELSE
IJUMP = 1
DO J = JSTART, JSTOP, JR
JP1 = J + I2RBY2
JP2 = J + I2R
JP3 = JP2 + I2RBY2
JM1 = J - I2RBY2
JM2 = J - I2R
JM3 = JM2 - I2RBY2
IF (J == 1) THEN
CALL COSGEN (I2R, 1, FNUM, HALF, TCOS, size(TCOS) )
IF (I2R == 1) THEN
vecB(:MR) = matQ(:MR,1)
matQ(:MR,1) = matQ(:MR,2)
GO TO 112
ENDIF
vecB(:MR) = matQ(:MR,1) + &
HALF*(matQ(:MR,JP2)-matQ(:MR,JP1)-matQ(:MR,JP3))
matQ(:MR,1) = matQ(:MR,JP2) + matQ(:MR,1) - matQ(:MR,JP1)
GO TO 112
ENDIF
GO TO (107,108) IJUMP
107 CONTINUE
IJUMP = 2
CALL COSGEN (I2R, 1, HALF, ZERO, TCOS, size(TCOS) )
108 CONTINUE
IF (I2R == 1) THEN
vecB(:MR) = TWO*matQ(:MR,J)
matQ(:MR,J) = matQ(:MR,JM2) + matQ(:MR,JP2)
ELSE
DO I = 1, MR
FI = matQ(I,J)
matQ(I,J)=matQ(I,J)-matQ(I,JM1)-matQ(I,JP1)+ &
matQ(I,JM2)+matQ(I,JP2)
vecB(I) =FI + matQ(I,J) - matQ(I,JM3) - matQ(I,JP3)
END DO
ENDIF
112 CONTINUE
CALL TRIX (I2R, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
!
! END OF REDUCTION FOR REGULAR UNKNOWNS.
!
END DO
!
! BEGIN SPECIAL REDUCTION FOR LAST UNKNOWN.
!
J = JSTOP + JR
ENDIF
NLAST = J
JM1 = J - I2RBY2
JM2 = J - I2R
JM3 = JM2 - I2RBY2
IF (NROD /= 0) THEN
!
! ODD NUMBER OF UNKNOWNS
!
IF (I2R == 1) THEN
vecB(:MR) = matQ(:MR,J)
matQ(:MR,J) = matQ(:MR,JM2)
ELSE
vecB(:MR)=matQ(:MR,J)+ &
HALF*(matQ(:MR,JM2)-matQ(:MR,JM1)-matQ(:MR,JM3))
IF (NRODPR == 0) THEN
matQ(:MR,J) = matQ(:MR,JM2) + vecP(IP+1:MR+IP)
IP = IP - MR
ELSE
matQ(:MR,J) = matQ(:MR,J) - matQ(:MR,JM1) + matQ(:MR,JM2)
ENDIF
IF (LR /= 0) CALL COSGEN (LR, 1, FNUM2, HALF, TCOS(KR+1), &
size(tcos)-KR)
ENDIF
CALL COSGEN (KR, 1, FNUM2, HALF, TCOS, size(tcos))
CALL TRIX (KR, LR, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
KR = KR + I2R
ELSE
JP1 = J + I2RBY2
JP2 = J + I2R
IF (I2R == 1) THEN
vecB(:MR) = matQ(:MR,J)
TCOS(1) = 0.
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
IP = 0
IPSTOR = MR
vecP(:MR) = vecB(:MR)
vecB(:MR) = vecB(:MR) + matQ(:MR,N)
TCOS(1) = -ONE + TWO*DBLE(NP/2)
TCOS(2) = 0.
CALL TRIX (1, 1, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,J) = matQ(:MR,JM2) + vecP(:MR) + vecB(:MR)
ELSE
vecB(:MR)=matQ(:MR,J)+ &
HALF*(matQ(:MR,JM2)-matQ(:MR,JM1)-matQ(:MR,JM3))
IF (NRODPR == 0) THEN
vecB(:MR) = vecB(:MR) + vecP(IP+1:MR+IP)
ELSE
vecB(:MR) = vecB(:MR) + matQ(:MR,JP2) - matQ(:MR,JP1)
ENDIF
CALL COSGEN (I2R, 1, HALF, ZERO, TCOS, size(tcos))
CALL TRIX (I2R, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
IP = IP + MR
IPSTOR = MAX0(IPSTOR,IP + MR)
vecP(IP+1:MR+IP) = vecB(:MR) + &
HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1))
vecB(:MR) = vecP(IP+1:MR+IP) + matQ(:MR,JP2)
IF (LR /= 0) THEN
CALL COSGEN (LR, 1, FNUM2, HALF, TCOS(I2R+1), size(tcos)-I2R)
CALL MERGE (TCOS, 0, I2R, I2R, LR, KR, size(TCOS))
ELSE
DO I = 1, I2R
II = KR + I
TCOS(II) = TCOS(I)
END DO
ENDIF
CALL COSGEN (KR, 1, FNUM2, HALF, TCOS, size(TCOS))
CALL TRIX (KR, KR, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,J) = matQ(:MR,JM2) + vecP(IP+1:MR+IP) + vecB(:MR)
ENDIF
LR = KR
KR = KR + JR
ENDIF
NR = (NLAST - 1)/JR + 1
IF (NR <= 3) GO TO 142
I2R = JR
NRODPR = NROD
GO TO 101
ENDIF ! IF (NR > 3)
142 CONTINUE
J = 1 + JR
JM1 = J - I2R
JP1 = J + I2R
JM2 = NLAST - I2R
IF (NR /= 2) THEN
IF (LR == 0) THEN
IF (N == 3) THEN
!
! CASE N = 3.
!
GO TO (143,148,143) NP
143 CONTINUE
vecB(:MR) = matQ(:MR,2)
vecB2(:MR) = matQ(:MR,1) + matQ(:MR,3)
vecB3(:MR) = 0.
SELECT CASE (NP)
CASE DEFAULT
TCOS(1) = -ONE
TCOS(2) = ONE
K1 = 1
CASE (1:2)
TCOS(1) = -TWO
TCOS(2) = ONE
TCOS(3) = -ONE
K1 = 2
END SELECT
K2 = 1
K3 = 0
K4 = 0
GO TO 150
148 CONTINUE
vecB(:MR) = matQ(:MR,2)
vecB2(:MR) = matQ(:MR,3)
vecB3(:MR) = matQ(:MR,1)
CALL COSGEN (3, 1, HALF, ZERO, TCOS, size(TCOS))
TCOS(4) = -ONE
TCOS(5) = ONE
TCOS(6) = -ONE
TCOS(7) = ONE
K1 = 3
K2 = 2
K3 = 1
K4 = 1
150 CONTINUE
CALL TRI3(MR,vecA,vecBB,vecC,K,vecB,vecB2,vecB3,TCOS, &
size(TCOS),vecD,vecW,vecW2,vecW3)
vecB(:MR) = vecB(:MR) + vecB2(:MR) + vecB3(:MR)
GO TO (153,153,152) NP
152 CONTINUE
TCOS(1) = TWO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
153 CONTINUE
matQ(:MR,2) = vecB(:MR)
vecB(:MR) = matQ(:MR,1) + vecB(:MR)
TCOS(1) = -ONE + FOUR*FNUM
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,1) = vecB(:MR)
JR = 1
I2R = 0
GO TO 188
ENDIF
!
! CASE N = 2**P+1
!
vecB(:MR)=matQ(:MR,J)+matQ(:MR,1)-matQ(:MR,JM1)+ &
matQ(:MR,NLAST)-matQ(:MR,JM2)
GO TO (158,160,158) NP
158 CONTINUE
vecB2(:MR) = matQ(:MR,1) + matQ(:MR,NLAST) + &
matQ(:MR,J) - matQ(:MR,JM1) -matQ(:MR,JP1)
vecB3(:MR) = 0.
K1 = NLAST - 1
K2 = NLAST + JR - 1
CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(NLAST), size(TCOS)-NLAST+1)
TCOS(K2) = TWO*DBLE(NP - 2)
CALL COSGEN (JR, 1, HALF - FNUM, HALF, TCOS(K2+1),size(TCOS)-K2)
K3 = (3 - NP)/2
CALL MERGE (TCOS, K1, JR - K3, K2 - K3, JR + K3, 0, size(TCOS))
K1 = K1 - 1 + K3
CALL COSGEN (JR, 1, FNUM, HALF, TCOS(K1+1),size(TCOS)-K1)
K2 = JR
K3 = 0
K4 = 0
GO TO 162
160 CONTINUE
DO I = 1, MR
FI = HALF*(matQ(I,J)-matQ(I,JM1)-matQ(I,JP1))
vecB2(I) = matQ(I,1) + FI
vecB3(I) = matQ(I,NLAST) + FI
END DO
K1 = NLAST + JR - 1
K2 = K1 + JR - 1
CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K1+1), size(TCOS)-K1)
CALL COSGEN (NLAST, 1, HALF, ZERO, TCOS(K2+1), size(TCOS)-K2)
CALL MERGE (TCOS, K1, JR - 1, K2, NLAST, 0, size(TCOS))
K3 = K1 + NLAST - 1
K4 = K3 + JR
CALL COSGEN (JR, 1, HALF, HALF, TCOS(K3+1),SIZE(TCOS)-K3)
CALL COSGEN (JR, 1, ZERO, HALF, TCOS(K4+1),SIZE(TCOS)-K4)
CALL MERGE (TCOS, K3, JR, K4, JR, K1, size(TCOS) )
K2 = NLAST - 1
K3 = JR
K4 = JR
162 CONTINUE
CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, &
TCOS, size(TCOS), vecD, vecW, vecW2, vecW3)
vecB(:MR) = vecB(:MR) + vecB2(:MR) + vecB3(:MR)
IF (NP == 3) THEN
TCOS(1) = TWO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
ENDIF
matQ(:MR,J) = vecB(:MR) + &
HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1))
vecB(:MR) = matQ(:MR,J) + matQ(:MR,1)
CALL COSGEN (JR, 1, FNUM, HALF, TCOS,size(TCOS))
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,1) = matQ(:MR,1) - matQ(:MR,JM1) + vecB(:MR)
GO TO 188
ENDIF
!
! CASE OF GENERAL N WITH NR = 3 .
!
vecB(:MR) = matQ(:MR,1) - matQ(:MR,JM1) + matQ(:MR,J)
IF (NROD == 0) THEN
vecB(:MR) = vecB(:MR) + vecP(IP+1:MR+IP)
ELSE
vecB(:MR) = vecB(:MR) + matQ(:MR,NLAST) - matQ(:MR,JM2)
ENDIF
DO I = 1, MR
T = HALF*(matQ(I,J)-matQ(I,JM1)-matQ(I,JP1))
matQ(I,J) = T
vecB2(I) = matQ(I,NLAST) + T
vecB3(I) = matQ(I,1) + T
END DO
K1 = KR + 2*JR
CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K1+1),size(TCOS)-K1)
K2 = K1 + JR
TCOS(K2) = TWO*DBLE(NP - 2)
K4 = (NP - 1)*(3 - NP)
K3 = K2 + 1 - K4
CALL COSGEN(KR+JR+K4,1,HALF*DBLE(K4),ONE-DBLE(K4),TCOS(K3), &
size(TCOS)-K3+1 )
K4 = 1 - NP/3
CALL MERGE (TCOS, K1, JR - K4, K2 - K4, KR + JR + K4, 0, size(TCOS) )
IF (NP == 3) K1 = K1 - 1
K2 = KR + JR
K4 = K1 + K2
CALL COSGEN (KR, 1, FNUM2, HALF, TCOS(K4+1),size(TCOS)-K4)
K3 = K4 + KR
CALL COSGEN (JR, 1, FNUM, HALF, TCOS(K3+1),size(TCOS)-K3)
CALL MERGE (TCOS, K4, KR, K3, JR, K1, size(TCOS) )
K4 = K3 + JR
CALL COSGEN (LR, 1, FNUM2, HALF, TCOS(K4+1),size(TCOS)-K4)
CALL MERGE (TCOS, K3, JR, K4, LR, K1 + K2, size(TCOS) )
CALL COSGEN (KR, 1, FNUM2, HALF, TCOS(K3+1),size(TCOS)-K3)
K3 = KR
K4 = KR
CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, &
TCOS, SIZE(TCOS), vecD, vecW, vecW2, vecW3)
vecB(:MR) = vecB(:MR) + vecB2(:MR) + vecB3(:MR)
IF (NP == 3) THEN
TCOS(1) = TWO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
ENDIF
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
vecB(:MR) = matQ(:MR,1) + matQ(:MR,J)
CALL COSGEN (JR, 1, FNUM, HALF, TCOS,size(TCOS))
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
IF (JR == 1) THEN
matQ(:MR,1) = vecB(:MR)
GO TO 188
ENDIF
matQ(:MR,1) = matQ(:MR,1) - matQ(:MR,JM1) + vecB(:MR)
GO TO 188
ENDIF
vecB3(:MR) = 0.
vecB (:MR) = matQ(:MR,1) + vecP(IP+1:MR+IP)
matQ (:MR,1) = matQ(:MR,1) - matQ(:MR,JM1)
vecB2(:MR) = matQ(:MR,1) + matQ(:MR,NLAST)
K1 = KR + JR
K2 = K1 + JR
CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K1+1),SIZE(TCOS)-K1)
GO TO (182,183,182) NP
182 CONTINUE
TCOS(K2) = TWO*DBLE(NP - 2)
CALL COSGEN (KR, 1, ZERO, ONE, TCOS(K2+1),SIZE(TCOS)-K2)
GO TO 184
183 CONTINUE
CALL COSGEN (KR + 1, 1, HALF, ZERO, TCOS(K2),SIZE(TCOS)-K2)
184 CONTINUE
K4 = 1 - NP/3
CALL MERGE (TCOS, K1, JR - K4, K2 - K4, KR + K4, 0, size(TCOS) )
IF (NP == 3) K1 = K1 - 1
K2 = KR
CALL COSGEN (KR, 1, FNUM2, HALF, TCOS(K1+1),SIZE(TCOS)-K1)
K4 = K1 + KR
CALL COSGEN (LR, 1, FNUM2, HALF, TCOS(K4+1),SIZE(TCOS)-K4)
K3 = LR
K4 = 0
CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, &
TCOS, SIZE(TCOS), vecD, vecW, vecW2, vecW3)
vecB(:MR) = vecB(:MR) + vecB2(:MR)
IF (NP == 3) THEN
TCOS(1) = TWO
CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
ENDIF
matQ(:MR,1) = matQ(:MR,1) + vecB(:MR)
188 CONTINUE
J = NLAST - JR
vecB(:MR) = matQ(:MR,NLAST) + matQ(:MR,J)
JM2 = NLAST - I2R
IF (JR == 1) THEN
matQ(:MR,NLAST) = 0.
ELSE
IF (NROD == 0) THEN
matQ(:MR,NLAST) = vecP(IP+1:MR+IP)
IP = IP - MR
ELSE
matQ(:MR,NLAST) = matQ(:MR,NLAST) - matQ(:MR,JM2)
ENDIF
ENDIF
CALL COSGEN (KR, 1, FNUM2, HALF, TCOS,SIZE(TCOS))
CALL COSGEN (LR, 1, FNUM2, HALF, TCOS(KR+1),SIZE(TCOS)-KR)
CALL TRIX (KR, LR, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,NLAST) = matQ(:MR,NLAST) + vecB(:MR)
NLASTP = NLAST
197 CONTINUE
JSTEP = JR
JR = I2R
I2R = I2R/2
IF (JR == 0) GO TO 210
JSTART = 1 + JR
KR = KR - JR
IF (NLAST + JR <= N) THEN
KR = KR - JR
NLAST = NLAST + JR
JSTOP = NLAST - JSTEP
ELSE
JSTOP = NLAST - JR
ENDIF
LR = KR - JR
CALL COSGEN (JR, 1, HALF, ZERO, TCOS,SIZE(TCOS))
DO J = JSTART, JSTOP, JSTEP
JM2 = J - JR
JP2 = J + JR
IF (J == JR) THEN
vecB(:MR) = matQ(:MR,J) + matQ(:MR,JP2)
ELSE
vecB(:MR) = matQ(:MR,J) + matQ(:MR,JM2) + matQ(:MR,JP2)
ENDIF
IF (JR == 1) THEN
matQ(:MR,J) = 0.
ELSE
JM1 = J - I2R
JP1 = J + I2R
matQ(:MR,J) = HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1))
ENDIF
CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, &
size(TCOS), vecD, vecW)
matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
END DO
NROD = 1
IF (NLAST + I2R <= N) NROD = 0
IF (NLASTP /= NLAST) GO TO 188
GO TO 197
210 CONTINUE
vecW(1) = IPSTOR
!
! REVISION HISTORY---
!
! SEPTEMBER 1973 VERSION 1
! APRIL 1976 VERSION 2
! JANUARY 1978 VERSION 3
! DECEMBER 1979 VERSION 3.1
! FEBRUARY 1985 DOCUMENTATION UPGRADE
! NOVEMBER 1988 VERSION 3.2, FORTRAN 77 CHANGES
! June 2004 Version 5.0, Fortran 90 Changes
!-----------------------------------------------------------------------
END SUBROUTINE POSTG2
|