Files @ d6faa5ffcedf
Branch filter:

Location: MD/arcos/src/dft.c - annotation

Margreet Nool
install arcos
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
d6faa5ffcedf
/** @file dft.c
 * @brief All routines related with discrete fourier transformations.
 *
 *  We make intensive use of the fftw library.\n
 *  FFTW, the Fastest Fourier Transform in the West, is a collection of fast
 *  C routines to compute the discrete Fourier transform.
 *  See http://www.fftw.org/doc/ for the manual documents of FFTW version 3.3.3.
 *
 *  Note: All calls to FFTW should be made here, so 
 *  1.  If we decide to change our FFT library, we only have to make 
 *      changes in this module.
 *  2.  We can compile a 2d version of the code that does not depend on fftw.
 *      by eliminating this module.
 */

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <fftw3.h> 

#include "cdr.h"
#include "cstream.h"
#include "grid.h"
#include "parameters.h"
#include "proto.h"
#include "rz_array.h"
#include "species.h"

static void renormalize (cdr_grid_t *grid, rz_array_t *var);
static double rnd_gauss (double mu, double sigma);
static double ranf (void);

/** @brief Transform the discrete fourier transformations ???? */
void
dft_transform (rz_array_t *in, rz_array_t *out, int sign)
{
  int i;
  fftw_plan *plans;
  fftw_r2r_kind kind;

  debug (2, "dft_transform (..., sign = %d)\n", sign);

  if (sign > 0) kind = FFTW_R2HC;
  else kind = FFTW_HC2R;

  assert(in->dim == 3 && out->dim == 3);
  assert(in->ntheta == out->ntheta && in->nr == out->nr && in->nz == out->nz);

  /* Unfortunately, the fftw planning routines are not thread-safe. */

  /* The +4 here is because we also transform the buffer, which is
     useful to easily set boundaries, etc. */
  plans = xmalloc (sizeof (fftw_plan) * (in->nz + 4));

  for (i = 0; i < in->nz + 4; i++) {
    plans[i] = fftw_plan_many_r2r (1,                            /* Rank */
				   &in->ntheta,                  /* n[] */
				   in->nr + 4,                   /* howmany */
				   RZTP (in, in->r0, in->z0 + i, 0), 
				   /* in */
				   &in->ntheta,                  /* inembed */
				   in->strides[THETA_INDX],      /* istride */
				   in->strides[R_INDX],          /* idist */
				   RZTP (out, in->r0, out->z0 + i, 0), 
				   /* out */
				   &out->ntheta,                 /* onembed */
				   out->strides[THETA_INDX],     /* ostride */
				   out->strides[R_INDX],         /* odist */
				   &kind,                        /* kind */
				   FFTW_ESTIMATE);               /* flags */
    
  }

#pragma omp parallel
  {
#pragma omp for
    for (i = 0; i < in->nz + 4; i++) {
      fftw_execute (plans[i]);
    }
  }


  for (i = 0; i < in->nz + 4; i++) {
      fftw_destroy_plan (plans[i]);
  }

  free (plans);
  fftw_cleanup();
}


/** @brief Calculates the Fourier transform of the derivative of a function given its
   Fourier transform. */
void
dft_diff (grid_t *grid, rz_array_t *f)
{
  int ir, iz, k;

  debug (2, "dft_diff (" grid_printf_str ", ...)\n", grid_printf_args(grid));

  /* The parallelization here is not optimal if max_ntheta is not a multiple
     of 2. */
#pragma omp parallel
  {
#pragma omp for private(ir, iz)
    for (k = 0; k < grid->ntheta / 2 + 1; k++) {
      if (k < grid->ntheta / 2) {
	iter_grid_n (grid, ir, iz, 2) {
	  double re, im, re_f, im_f;
	
	  /* For k == 0, everything is real. */
	  re_f = RZT (f, ir, iz, k);
	  im_f = (k == 0? 0: RZT (f, ir, iz, grid->ntheta - k));
	  
	  re = re_f * wk[k] - (k == 0? 0: im_f * wk[grid->ntheta - k]);
	  im = (k == 0? 0: re_f * wk[grid->ntheta - k] + im_f * wk[k]);
	  
	  RZT (f, ir, iz, k) = re / r_at (ir, grid->level);
	  if (k != 0) 
	    RZT (f, ir, iz, grid->ntheta - k) = im / r_at (ir, grid->level);
	} 
      } else if ((grid->ntheta % 2) == 0) {
	iter_grid_n (grid, ir, iz, 2) {
	  /* Also for k = ntheta / 2, everything is real. */
	  RZT (f, ir, iz, k) = wk[k] * RZT (f, ir, iz, k) 
	    / r_at (ir, grid->level);
	}
      }   
    }
  }
}


/** @brief Calculates the @a weight for a given cdr grid and a variable ???
 *
 * For a given cdr grid and a variable, calculates its "weight": 
 * the integral of the variable raised to power for each Fourier mode.
 * weights[] must be able to contain at least cdr->ntheta values.
*/
void
dft_weight (cdr_grid_t *cdr, rz_array_t *var, double weights[], double power)
{
  int k, ir, iz;
  double pwr, tmp;

  debug (2, "dft_weigth(" grid_printf_str ", ...)\n", grid_printf_args(cdr));

#pragma omp parallel
  {
#pragma omp for private(ir, iz, pwr, tmp)
    for (k = 0; k < cdr->ntheta; k++) {
      pwr = 0;
      iter_grid(cdr, ir, iz) {
	/* Slow, since power is usually 1 or 2, 
	   but this is outside the main loop, so we buy generality
	   at the cost of speed. */
	tmp = pow(RZT(var, ir, iz, k), power);
	pwr += (tmp * r_at(ir, cdr->level));
      }
      weights[k] = twopi * pwr * dr[cdr->level] * dz[cdr->level];
    }
  }
}


/** @brief Outputs to a file 'weights.tsv' the results of dft_weight.
 *
 * Assumes that grid->charge is calculated but in real space then it
 * transforms it to Fourier space and leaves it like that: so do not
 * assume that grid->charge is unchanged.
 *
 *  grid->dens[electrons], on the other hand, is transformed forth and back.
 */
void
dft_out_weights (cdr_grid_t *grid, const char *prefix, double t)
{
  static FILE *fp_charge = NULL;
  static FILE *fp_electrons = NULL;
  static double *powers_charge = NULL;
  static double *powers_electrons = NULL;
  int i;

  if (NULL == fp_charge) {
    char *fname;
    asprintf (&fname, "%s/charge-weights.tsv", prefix);
    fp_charge = fopen (fname, "w");

    if (NULL == fp_charge) {
      fatal ("Unable to open %s\n", fname);
      return;
    }
    free (fname);

    asprintf (&fname, "%s/electrons-weights.tsv", prefix);
    fp_electrons = fopen (fname, "w");

    if (NULL == fp_electrons) {
      fatal ("Unable to open %s\n", fname);
      return;
    }
    free (fname);
  }

  if (NULL == powers_charge) {
    powers_charge = xmalloc (sizeof(double) * grid->ntheta);
    powers_electrons = xmalloc (sizeof(double) * grid->ntheta);
  }

  dft_transform (grid->charge, grid->charge, 1);  
  dft_weight (grid, grid->charge, powers_charge, 2.0);

  /* The electron density has to be transformed back, since we will still need
     it. */
  dft_transform (grid->dens[electrons], grid->dens[electrons], 1);  
  dft_weight (grid, grid->dens[electrons], powers_electrons, 1.0);
  dft_transform (grid->dens[electrons], grid->dens[electrons], -1);
  renormalize(grid, grid->dens[electrons]);

  fprintf (fp_charge, "%g", t);
  fprintf (fp_electrons, "%g", t);

  for (i = 0; i < grid->ntheta; i++) {
    fprintf (fp_charge, "\t%g", powers_charge[i]);
    fprintf (fp_electrons, "\t%g", powers_electrons[i]);
  }

  fprintf (fp_charge, "\n");
  fprintf (fp_electrons, "\n");

  fflush(fp_charge);
  fflush(fp_electrons);
}


/** @brief Perturbs a FFT-transformed variable.
 *
 * Assumes that the unperturbed variable is axi-symmetrical and hence
 * all modes are zero except k=0.  The perturbation is then selected
 * as a Gaussian random number epsilon_k times the zero-mode value of
 * the variable.  epsilon_k is distributed as
 * epsilon_k = N(0, perturb_epsilon).
 */
void
dft_perturb (cdr_grid_t *cdr, rz_array_t *var, double *epsilon_k)
{
  int k, ir, iz;

#pragma omp parallel
  {
#pragma omp for private(ir, iz)
    for (k = 1; k < cdr->ntheta; k++) {
      if (k > perturb_max_k && k < (cdr->ntheta - perturb_max_k))
	continue;

      iter_grid_n (cdr, ir, iz, 2) {
	RZT (var, ir, iz, k) = 
	  /* We multiply the perturbation by r to ensure that it is
	     continuous at r -> 0. */
	  epsilon_k[k - 1] * RZT (var, ir, iz, 0) * r_at (ir, cdr->level);
      }
    }
  }
}

/** @brief Takes a density in real space, transforms it to Fourier space,
 * perturbs it and then transforms back to real space. */
void 
dft_dens_perturb_r (cdr_grid_t *grid, int species, double *epsilon_k)
{
  int ir, iz, k, allocated = FALSE;
  cdr_grid_t *leaf;
  double A;

  debug (2, "dft_dens_perturb_r(" grid_printf_str ", %s)\n", 
	 grid_printf_args(grid), spec_index[species]->name);

  /* We normalize the perturbation using the maximum of the densities. */
  A =  invpi32 * seed_N / (seed_sigma_x * seed_sigma_y * seed_sigma_z);

  if (NULL == epsilon_k) {
    epsilon_k = (double*) xmalloc (sizeof(double) * (grid->ntheta - 1));
    
    for (k = 1; k < grid->ntheta; k++) {
      /* We divide by ntheta because the FFT is not normalized and we want
	 to express perturb_epsilon as a fraction of the k=0 mode. */
      epsilon_k[k - 1] = rnd_gauss (0, perturb_epsilon) / grid->ntheta / A;
    }
    
    allocated = TRUE;
  }

  iter_childs (grid, leaf) {
    dft_dens_perturb_r (leaf, species, epsilon_k);
  }

  dft_transform (grid->dens[species], grid->dens[species], 1);
  
  renormalize(grid, grid->dens[species]);

  dft_perturb (grid, grid->dens[species], epsilon_k);
  dft_transform (grid->dens[species], grid->dens[species], -1);

  if (allocated) free (epsilon_k);
}


/** @brief Renormalize @a var for some cases.
 *
 * FFTW does not normalize the Fourier transform, so after transforming
 * forth and back, the original values are multiplied by max_ntheta.
 * We use this routine to renormalize @a var in those cases.
 *
 * Note that this is taken care of when calculating the charge, so
 * in most cases you do not need to call this function.
 */
static void 
renormalize (cdr_grid_t *grid, rz_array_t *var)
{
  int ir, iz, itheta;

#pragma omp parallel
  {
#pragma omp for private(ir, iz)
    for (itheta = 0; itheta < grid->ntheta; itheta++) {
      iter_grid_n (grid, ir, iz, 2) {
	RZT(var, ir, iz, itheta) /= grid->ntheta;
      }
    }
  }
}


/** @brief Returns a random number with a gaussian distribution centered
 * around mu with width sigma.
 */
static double
rnd_gauss(double mu, double sigma)
{
  double x1, x2, w;
  static double y1, y2;
  static int has_more = FALSE;

  
  if (has_more) {
    has_more = FALSE;
    return mu + y2 * sigma;
  }

  do {
    x1 = 2.0 * ranf() - 1.0;
    x2 = 2.0 * ranf() - 1.0;
    w = x1 * x1 + x2 * x2;
  } while (w >= 1.0);
  
  w = sqrt ((-2.0 * log (w)) / w);
  y1 = x1 * w;
  y2 = x2 * w;

  has_more = TRUE;

  return mu + y1 * sigma;
}

#define AM (1.0 / RAND_MAX)

/** @brief Returns a random number uniformly distributed in [0, 1] */
static double
ranf (void)
{
  return rand() * AM;
}