File diff 000000000000 → d6faa5ffcedf
libconfig-1.4.9/doc/libconfig.texi
Show inline comments
 
new file 100644
 
\input texinfo.tex    @c -*-texinfo-*-
 
@c
 
@c %**start of header
 

	
 
@c All text is ignored before the setfilename.
 
@setfilename libconfig.info
 
@settitle libconfig
 

	
 
@set edition 1.4.9
 
@set update-date 28 September 2012
 
@set subtitle-text A Library For Processing Structured Configuration Files
 
@set author-text Mark A.@: Lindner
 

	
 
@comment %**end of header
 

	
 
@dircategory Software libraries
 
@direntry
 
* libconfig: (libconfig).       A Library For Processing Structured Configuration Files
 
@end direntry
 

	
 

	
 
@tex
 
\global\emergencystretch = .3\hsize
 
@end tex
 

	
 
@setchapternewpage odd
 

	
 
@titlepage
 

	
 
@title libconfig
 
@subtitle @value{subtitle-text}
 
@subtitle Version @value{edition}
 
@subtitle @value{update-date}
 

	
 
@author @value{author-text}
 

	
 
@page
 
@vskip 0pt plus 1filll
 
Copyright @copyright{} 2005-2012  Mark A Lindner
 

	
 
Permission is granted to make and distribute verbatim copies of
 
this manual provided the copyright notice and this permission notice
 
are preserved on all copies.
 

	
 
Permission is granted to copy and distribute modified versions of this
 
manual under the conditions for verbatim copying, provided that the entire
 
resulting derived work is distributed under the terms of a permission
 
notice identical to this one.
 

	
 
@end titlepage
 

	
 
@c Give the HTML output a title page that somewhat resembles the printed one
 
@ifhtml
 
@html
 
<hr noshade size=6 color="black">
 
<div align=right>@value{subtitle-text}<br>
 
Version @value{edition}<br>
 
@value{update-date}</div>
 
<br><br><br><br>
 
<font size=+1>@value{author-text}</font>
 
<hr size=3 noshade color="black">
 
<br><br>
 
@end html
 
@end ifhtml
 

	
 
@contents
 

	
 
@ifnottex
 
@node Top
 
@comment  node-name,  next,  previous,  up
 
@top libconfig
 
@end ifnottex
 

	
 
@menu
 
* Introduction::
 
* Configuration Files::
 
* The C API::
 
* The C++ API::
 
* Example Programs::
 
* Configuration File Grammar::
 
* License::
 
* Function Index::
 
* Type Index::
 
* Concept Index::
 
@end menu
 

	
 
@node Introduction, Configuration Files, Top, Top
 
@comment  node-name,  next,  previous,  up
 
@menu
 
* Why Another Configuration File Library?::
 
* Using the Library from a C Program::
 
* Using the Library from a C++ Program::
 
* Multithreading Issues::
 
* Internationalization Issues::
 
* Compiling Using pkg-config::
 
* Version Test Macros::
 
@end menu
 
@chapter Introduction
 

	
 
@i{Libconfig} is a library for reading, manipulating, and writing
 
structured configuration files. The library features a fully
 
reentrant parser and includes bindings for both the C and C++
 
programming languages.
 

	
 
The library runs on modern POSIX-compilant systems, such as Linux,
 
Solaris, and Mac OS X (Darwin), as well as on Microsoft Windows
 
2000/XP and later (with either Microsoft Visual Studio 2005 or later,
 
or the GNU toolchain via the MinGW environment).
 

	
 
@node Why Another Configuration File Library?, Using the Library from a C Program, , Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Why Another Configuration File Library?
 

	
 
There are several open-source configuration file libraries available
 
as of this writing. This library was written because each of those
 
libraries falls short in one or more ways. The main features of
 
@i{libconfig} that set it apart from the other libraries are:
 

	
 
@itemize @bullet
 

	
 
@item A fully reentrant parser. Independent configurations can be parsed in concurrent threads at the same time.
 

	
 
@item Both C @i{and} C++ bindings, as well as hooks to allow for the creation of wrappers in other languages.
 

	
 
@item A simple, structured configuration file format that is more
 
readable and compact than XML and more flexible than the obsolete but
 
prevalent Windows ``INI'' file format.
 

	
 
@item A low-footprint implementation (just 37K for the C library and 76K for
 
the C++ library) that is suitable for memory-constrained systems.
 

	
 
@item Proper documentation.
 

	
 
@end itemize
 

	
 
@node Using the Library from a C Program, Using the Library from a C++ Program, Why Another Configuration File Library?, Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Using the Library from a C Program
 

	
 
To use the library from C code, include the following preprocessor
 
directive in your source files:
 

	
 
@sp 1
 
@smallexample
 
#include <libconfig.h>
 
@end smallexample
 
@sp 1
 

	
 
To link with the library, specify @samp{-lconfig} as an argument to the
 
linker.
 

	
 
@node Using the Library from a C++ Program, Multithreading Issues, Using the Library from a C Program, Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Using the Library from a C++ Program
 

	
 
To use the library from C++, include the following preprocessor
 
directive in your source files:
 

	
 
@sp 1
 
@smallexample
 
#include <libconfig.h++>
 
@end smallexample
 
@sp 1
 

	
 
Or, alternatively:
 

	
 
@sp 1
 
@smallexample
 
#include <libconfig.hh>
 
@end smallexample
 
@sp 1
 
@page
 
The C++ API classes are defined in the namespace @samp{libconfig}, hence the
 
following statement may optionally be used:
 

	
 
@sp 1
 
@smallexample
 
using namespace libconfig;
 
@end smallexample
 
@sp 1
 

	
 
To link with the library, specify @samp{-lconfig++} as an argument to
 
the linker.
 

	
 
@node Multithreading Issues, Internationalization Issues, Using the Library from a C++ Program, Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Multithreading Issues
 

	
 
@i{Libconfig} is fully @dfn{reentrant}; the functions in the library
 
do not make use of global variables and do not maintain state between
 
successive calls. Therefore two independent configurations may be safely
 
manipulated concurrently by two distinct threads.
 

	
 
@i{Libconfig} is not @dfn{thread-safe}. The library is not aware of
 
the presence of threads and knows nothing about the host system's
 
threading model. Therefore, if an instance of a configuration is to be
 
accessed from multiple threads, it must be suitably protected by
 
synchronization mechanisms like read-write locks or mutexes; the
 
standard rules for safe multithreaded access to shared data must be
 
observed.
 

	
 
@i{Libconfig} is not @dfn{async-safe}. Calls should not be made into
 
the library from signal handlers, because some of the C library
 
routines that it uses may not be async-safe.
 

	
 
@i{Libconfig} is not guaranteed to be @dfn{cancel-safe}. Since it is
 
not aware of the host system's threading model, the library does not
 
contain any thread cancellation points. In most cases this will not be
 
an issue for multithreaded programs. However, be aware that some of
 
the routines in the library (namely those that read/write
 
configurations from/to files or streams) perform I/O using C library
 
routines which may potentially block; whether or not these C library
 
routines are cancel-safe depends on the host system.
 

	
 
@node Internationalization Issues, Compiling Using pkg-config, Multithreading Issues, Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Internationalization Issues
 

	
 
@cindex Unicode
 
@cindex UTF-8
 
@i{Libconfig} does not natively support Unicode configuration files,
 
but string values may contain Unicode text encoded in UTF-8; such
 
strings will be treated as ordinary 8-bit ASCII text by the
 
library. It is the responsibility of the calling program to perform
 
the necessary conversions to/from wide (@t{wchar_t}) strings using the
 
wide string conversion functions such as @t{mbsrtowcs()} and
 
@t{wcsrtombs()} or the @t{iconv()} function of the @i{libiconv}
 
library.
 

	
 
@cindex locale
 
The textual representation of a floating point value varies by
 
locale. However, the @i{libconfig} grammar specifies that
 
floating point values are represented using a period (`.') as the
 
radix symbol; this is consistent with the grammar of most programming
 
languages. When a configuration is read in or written out,
 
@i{libconfig} temporarily changes the @t{LC_NUMERIC} category of the
 
locale of the calling thread to the ``C'' locale to ensure consistent
 
handling of floating point values regardless of the locale(s) in use
 
by the calling program.
 

	
 
Note that the MinGW environment does not (as of this writing) provide
 
functions for changing the locale of the calling thread. Therefore,
 
when using @i{libconfig} in that environment, the calling program is
 
responsible for changing the @t{LC_NUMERIC} category of the locale to
 
the "C" locale before reading or writing a configuration.
 

	
 
@node Compiling Using pkg-config, Version Test Macros, Internationalization Issues, Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Compiling Using pkg-config
 

	
 
On UNIX systems you can use the @i{pkg-config} utility (version 0.20
 
or later) to automatically select the appropriate compiler and linker
 
switches for @i{libconfig}. Ensure that the environment variable
 
@code{PKG_CONFIG_PATH} contains the absolute path to the
 
@file{lib/pkgconfig} subdirectory of the @i{libconfig} installation. Then,
 
you can compile and link C programs with @i{libconfig} as follows:
 

	
 
@smallexample
 
gcc `pkg-config --cflags libconfig` myprogram.c -o myprogram \
 
    `pkg-config --libs libconfig`
 
@end smallexample
 
@sp 1
 

	
 
And similarly, for C++ programs:
 

	
 
@smallexample
 
g++ `pkg-config --cflags libconfig++` myprogram.cpp -o myprogram \
 
    `pkg-config --libs libconfig++`
 
@end smallexample
 

	
 
@sp 1
 
Note the backticks in the above examples.
 

	
 
When using @b{autoconf}, the @code{PKG_CHECK_MODULES} m4 macro may be used to check for the presence of a given version of @i{libconfig}, and set the appropriate Makefile variables automatically. For example:
 

	
 
@smallexample
 
PKG_CHECK_MODULES([LIBCONFIGXX], [libconfig++ >= 1.4],,
 
  AC_MSG_ERROR([libconfig++ 1.4 or newer not found.])
 
)
 
@end smallexample
 

	
 
In the above example, if @i{libconfig++} version 1.4 or newer is found,
 
the Makefile variables @code{LIBCONFIGXX_LIBS} and @code{LIBCONFIGXX_CFLAGS} will be
 
set to the appropriate compiler and linker flags for compiling with
 
@i{libconfig}, and if it is not found, the configure script will abort
 
with an error to that effect.
 

	
 
@node Version Test Macros, , Compiling Using pkg-config, Introduction
 
@comment  node-name,  next,  previous,  up
 
@section Version Test Macros
 

	
 
The @file{libconfig.h} header declares the following macros:
 

	
 
@defmac LIBCONFIG_VER_MAJOR
 
@defmacx LIBCONFIG_VER_MINOR
 
@defmacx LIBCONFIG_VER_REVISION
 

	
 
These macros represent the major version, minor version, and revision
 
of the @i{libconfig} library. For example, in @i{libconfig} 1.4 these
 
are defined as @samp{1}, @samp{4}, and @samp{0}, respectively. These
 
macros can be used in preprocessor directives to determine which
 
@i{libconfig} features and/or APIs are present. For example:
 

	
 
@smallexample
 
#if (((LIBCONFIG_VER_MAJOR == 1) && (LIBCONFIG_VER_MINOR >= 4)) \
 
     || (LIBCONFIG_VER_MAJOR > 1))
 
  /* use features present in libconfig 1.4 and later */
 
#endif
 
@end smallexample
 

	
 
These macros were introduced in @i{libconfig} 1.4.
 

	
 
@end defmac
 

	
 
Similarly, the @file{libconfig.h++} header declares the following macros:
 

	
 
@defmac LIBCONFIGXX_VER_MAJOR
 
@defmacx LIBCONFIGXX_VER_MINOR
 
@defmacx LIBCONFIGXX_VER_REVISION
 

	
 
These macros represent the major version, minor version, and revision
 
of the @i{libconfig++} library.
 

	
 
@end defmac
 

	
 
@node Configuration Files, The C API, Introduction, Top
 
@comment  node-name,  next,  previous,  up
 
@menu
 
* Settings::
 
* Groups::
 
* Arrays::
 
* Lists::
 
* Integer Values::
 
* 64-bit Integer Values::
 
* Floating Point Values::
 
* Boolean Values::
 
* String Values::
 
* Comments::
 
* Include Directives::
 
@end menu
 
@chapter Configuration Files
 

	
 
@i{Libconfig} supports structured, hierarchical configurations. These
 
configurations can be read from and written to files and manipulated
 
in memory.
 

	
 
@cindex setting
 
@cindex value
 
@cindex scalar value
 
@cindex array
 
@cindex group
 
@cindex list
 
@cindex configuration
 
A @dfn{configuration} consists of a group of @dfn{settings}, which
 
associate names with values. A @dfn{value} can be one of the
 
following:
 

	
 
@itemize @bullet
 
@item A @dfn{scalar value}: integer, 64-bit integer, floating-point number, boolean,
 
or string
 
@item An @dfn{array}, which is a sequence of scalar values, all of which must have the same type
 
@item A @dfn{group}, which is a collection of settings
 
@item A @dfn{list}, which is a sequence of values of any type, including other lists
 
@end itemize
 

	
 
Consider the following configuration file for a hypothetical GUI
 
application, which illustrates all of the elements of the configuration
 
file grammar.
 

	
 
@sp 1
 
@cartouche
 
@smallexample
 
# Example application configuration file
 

	
 
version = "1.0";
 

	
 
application:
 
@{
 
  window:
 
  @{
 
    title = "My Application";
 
    size = @{ w = 640; h = 480; @};
 
    pos = @{ x = 350; y = 250; @};
 
  @};
 

	
 
  list = ( ( "abc", 123, true ), 1.234, ( /* an empty list */) );
 

	
 
  books = ( @{ title  = "Treasure Island";
 
              author = "Robert Louis Stevenson";
 
              price  = 29.95;
 
              qty    = 5; @},
 
            @{ title  = "Snow Crash";
 
              author = "Neal Stephenson";
 
              price  = 9.99;
 
              qty    = 8; @} );
 

	
 
  misc:
 
  @{
 
    pi = 3.141592654;
 
    bigint = 9223372036854775807L;
 
    columns = [ "Last Name", "First Name", "MI" ];
 
    bitmask = 0x1FC3;
 
  @};
 
@};
 
@end smallexample
 
@end cartouche
 
@sp 1
 

	
 
@cindex path
 
Settings can be uniquely identified within the configuration by a
 
@dfn{path}. The path is a dot-separated sequence of names, beginning
 
at a top-level group and ending at the setting itself. Each name in
 
the path is the name of a setting; if the setting has no name because
 
it is an element in a list or array, an integer index in square
 
brackets can be used as the name.
 

	
 
For example, in our hypothetical configuration file, the path to the
 
@code{x} setting is @code{application.window.pos.x}; the path to the
 
@code{version} setting is simply @code{version}; and the path to the
 
@code{title} setting of the second book in the @code{books} list is
 
@code{application.books.[1].title}.
 

	
 
The datatype of a value is determined from the format of the value
 
itself. If the value is enclosed in double quotes, it is treated as a
 
string. If it looks like an integer or floating point number, it is
 
treated as such. If it is one of the values @code{TRUE}, @code{true},
 
@code{FALSE}, or @code{false} (or any other mixed-case version of
 
those tokens, e.g., @code{True} or @code{FaLsE}), it is treated as a
 
boolean. If it consists of a comma-separated list of values enclosed
 
in square brackets, it is treated as an array. And if it consists of a
 
comma-separated list of values enclosed in parentheses, it is treated
 
as a list. Any value which does not meet any of these criteria is
 
considered invalid and results in a parse error.
 

	
 
All names are case-sensitive. They may consist only of alphanumeric
 
characters, dashes (@samp{-}), underscores (@samp{_}), and asterisks
 
(@samp{*}), and must begin with a letter or asterisk. No other
 
characters are allowed.
 

	
 
In C and C++, integer, 64-bit integer, floating point, and string
 
values are mapped to the types @code{int}, @code{long long},
 
@code{double}, and @code{const char *}, respectively. The boolean type
 
is mapped to @code{int} in C and @code{bool} in C++.
 

	
 
The following sections describe the elements of the configuration file
 
grammar in additional detail.
 

	
 
@node Settings, Groups, , Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Settings
 

	
 
A setting has the form:
 

	
 
@i{name} @b{=} @i{value} @b{;}
 

	
 
or:
 

	
 
@i{name} @b{:} @i{value} @b{;}
 

	
 
The trailing semicolon is optional. Whitespace is not significant.
 

	
 
The value may be a scalar value, an array, a group, or a list.
 

	
 
@node Groups, Arrays, Settings, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Groups
 

	
 
A group has the form:
 

	
 
@b{@{}
 
   @i{settings ...}
 
@b{@}}
 

	
 
Groups can contain any number of settings, but each setting must have
 
a unique name within the group.
 

	
 
@node Arrays, Lists, Groups, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Arrays
 

	
 
An array has the form:
 

	
 
@b{[} @i{value}@b{,} @i{value ...} @b{]}
 

	
 
An array may have zero or more elements, but the elements must all be
 
scalar values of the same type.
 

	
 
@node Lists, Integer Values, Arrays, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Lists
 

	
 
A list has the form:
 

	
 
@b{(} @i{value}@b{,} @i{value ...} @b{)}
 

	
 
A list may have zero or more elements, each of which can be a scalar
 
value, an array, a group, or another list.
 

	
 
@node Integer Values, 64-bit Integer Values, Lists, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Integer Values
 

	
 
Integers can be represented in one of two ways: as a series of one or
 
more decimal digits (@samp{0} - @samp{9}), with an optional leading
 
sign character (@samp{+} or @samp{-}); or as a hexadecimal value
 
consisting of the characters @samp{0x} followed by a series of one or
 
more hexadecimal digits (@samp{0} - @samp{9}, @samp{A} - @samp{F},
 
@samp{a} - @samp{f}).
 

	
 
@node 64-bit Integer Values, Floating Point Values, Integer Values, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section 64-bit Integer Values
 

	
 
Long long (64-bit) integers are represented identically to integers,
 
except that an 'L' character is appended to indicate a 64-bit
 
value. For example, @samp{0L} indicates a 64-bit integer value 0.
 

	
 
@node Floating Point Values, Boolean Values, 64-bit Integer Values, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Floating Point Values
 

	
 
Floating point values consist of a series of one or more digits, one
 
decimal point, an optional leading sign character (@samp{+} or
 
@samp{-}), and an optional exponent. An exponent consists of the
 
letter @samp{E} or @samp{e}, an optional sign character, and a series
 
of one or more digits.
 

	
 
@node Boolean Values, String Values, Floating Point Values, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Boolean Values
 

	
 
Boolean values may have one of the following values: @samp{true},
 
@samp{false}, or any mixed-case variation thereof.
 

	
 
@node String Values, Comments, Boolean Values, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section String Values
 

	
 
@cindex escape sequence
 
String values consist of arbitrary text delimited by double
 
quotes. Literal double quotes can be escaped by preceding them with a
 
backslash: @samp{\"}. The escape sequences @samp{\\}, @samp{\f},
 
@samp{\n}, @samp{\r}, and @samp{\t} are also recognized, and have the
 
usual meaning.
 

	
 
In addition, the @samp{\x} escape sequence is supported; this sequence
 
must be followed by @i{exactly two} hexadecimal digits, which represent an
 
8-bit ASCII value. For example, @samp{\xFF} represents the character
 
with ASCII code 0xFF.
 

	
 
No other escape sequences are currently supported.
 

	
 
Adjacent strings are automatically concatenated, as in C/C++ source
 
code. This is useful for formatting very long strings as sequences of
 
shorter strings. For example, the following constructs are equivalent:
 

	
 
@itemize @bullet
 
@item
 
@code{"The quick brown fox jumped over the lazy dog."}
 

	
 
@item
 
@code{"The quick brown fox"} @*
 
@code{" jumped over the lazy dog."}
 

	
 
@item
 
@code{"The quick" /* comment */ " brown fox " // another comment} @*
 
@code{"jumped over the lazy dog."}
 

	
 
@end itemize
 
@page
 
@node Comments, Include Directives, String Values, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Comments
 

	
 
@cindex comment
 
Three types of comments are allowed within a configuration:
 

	
 
@itemize @bullet
 

	
 
@item Script-style comments. All text beginning with a @samp{#} character
 
to the end of the line is ignored.
 

	
 
@item C-style comments. All text, including line breaks, between a starting
 
@samp{/*} sequence and an ending @samp{*/} sequence is ignored.
 

	
 
@item C++-style comments. All text beginning with a @samp{//} sequence to the
 
end of the line is ignored.
 

	
 
@end itemize
 

	
 
As expected, comment delimiters appearing within quoted strings are
 
treated as literal text.
 

	
 
Comments are ignored when the configuration is read in, so they are
 
not treated as part of the configuration. Therefore if the
 
configuration is written back out to a stream, any comments that were
 
present in the original configuration will be lost.
 

	
 
@node Include Directives, , Comments, Configuration Files
 
@comment  node-name,  next,  previous,  up
 
@section Include Directives
 

	
 
@cindex include directive
 
A configuration file may ``include'' the contents of another file
 
using an @i{include directive}. This directive has the effect of
 
inlining the contents of the named file at the point of inclusion.
 

	
 
An include directive must appear on its own line in the input. It has
 
the form:
 

	
 
@b{@@include "}@i{filename}@b{"}
 

	
 
Any backslashes or double quotes in the filename must be escaped as
 
@samp{\\} and @samp{\"}, respectively.
 

	
 
For example, consider the following two configuration files:
 

	
 
@cartouche
 
@smallexample
 
# file: quote.cfg
 
quote = "Criticism may not be agreeable, but it is necessary."
 
        " It fulfils the same function as pain in the human"
 
        " body. It calls attention to an unhealthy state of"
 
        " things.\n"
 
        "\t--Winston Churchill";
 
@end smallexample
 
@end cartouche
 

	
 
@cartouche
 
@smallexample
 
# file: test.cfg
 
info: @{
 
  name = "Winston Churchill";
 
  @@include "quote.cfg"
 
  country = "UK";
 
@};
 
@end smallexample
 
@end cartouche
 

	
 
Include files may be nested to a maximum of 10 levels; exceeding this
 
limit results in a parse error.
 

	
 
Like comments, include directives are not part of the configuration
 
file syntax. They are processed before the configuration itself is
 
parsed. Therefore, they are not preserved when the configuration is
 
written back out to a stream. There is presently no support for
 
programmatically inserting include directives into a configuration.
 

	
 
@node The C API, The C++ API, Configuration Files, Top
 
@comment  node-name,  next,  previous,  up
 
@chapter The C API
 

	
 
@tindex config_t
 
@tindex config_setting_t
 
This chapter describes the C library API. The type @i{config_t}
 
represents a configuration, and the type @i{config_setting_t} represents
 
a configuration setting.
 

	
 
The boolean values @code{CONFIG_TRUE} and @code{CONFIG_FALSE} are
 
macros defined as @code{(1)} and @code{(0)}, respectively.
 

	
 
@deftypefun void config_init (@w{config_t * @var{config}})
 
@deftypefunx void config_destroy (@w{config_t * @var{config}})
 

	
 
These functions initialize and destroy the configuration object @var{config}.
 

	
 
@code{config_init()} initializes the @i{config_t} structure pointed to by
 
@var{config} as a new, empty configuration.
 

	
 
@code{config_destroy()} destroys the configuration @var{config},
 
deallocating all memory associated with the configuration, but does not
 
attempt to deallocate the @i{config_t} structure itself.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_read (@w{config_t * @var{config}}, @w{FILE * @var{stream}})
 

	
 
This function reads and parses a configuration from the given
 
@var{stream} into the configuration object @var{config}. It returns
 
@code{CONFIG_TRUE} on success, or @code{CONFIG_FALSE} on failure; the
 
@code{config_error_text()}, @code{config_error_file()},
 
@code{config_error_line()}, and @code{config_error_type()} functions,
 
described below, can be used to obtain information about the error.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_read_file (@w{config_t * @var{config}}, @w{const char * @var{filename}})
 

	
 
This function reads and parses a configuration from the file named
 
@var{filename} into the configuration object @var{config}. It returns
 
@code{CONFIG_TRUE} on success, or @code{CONFIG_FALSE} on failure; the
 
@code{config_error_text()} and @code{config_error_line()} functions,
 
described below, can be used to obtain information about the error.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_read_string (@w{config_t * @var{config}}, @w{const char * @var{str}})
 

	
 
This function reads and parses a configuration from the string
 
@var{str} into the configuration object @var{config}. It returns
 
@code{CONFIG_TRUE} on success, or @code{CONFIG_FALSE} on failure; the
 
@code{config_error_text()} and @code{config_error_line()} functions,
 
described below, can be used to obtain information about the error.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_write (@w{const config_t * @var{config}}, @w{FILE * @var{stream}})
 

	
 
This function writes the configuration @var{config} to the given
 
@var{stream}.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_write_file (@w{config_t * @var{config}}, @w{const char * @var{filename}})
 

	
 
This function writes the configuration @var{config} to the file named
 
@var{filename}. It returns @code{CONFIG_TRUE} on success, or
 
@code{CONFIG_FALSE} on failure.
 

	
 
@end deftypefun
 

	
 
@deftypefun {const char *} config_error_text (@w{const config_t * @var{config}})
 
@deftypefunx {const char *} config_error_file (@w{const config_t * @var{config}})
 
@deftypefunx int config_error_line (@w{const config_t * @var{config}})
 

	
 
These functions, which are implemented as macros, return the text,
 
filename, and line number of the parse error, if one occurred during a
 
call to @code{config_read()}, @code{config_read_string()}, or
 
@code{config_read_file()}. Storage for the strings returned by
 
@code{config_error_text()} and @code{config_error_file()} are managed
 
by the library and released automatically when the configuration is
 
destroyed; these strings must not be freed by the caller. If the error
 
occurred in text that was read from a string or stream,
 
@code{config_error_file()} will return NULL.
 

	
 
@end deftypefun
 

	
 
@deftypefun config_error_t config_error_type (@w{const config_t * @var{config}})
 
@tindex config_error_t
 
This function, which is implemented as a macro, returns the type of
 
error that occurred during the last call to one of the read or write
 
functions. The @var{config_error_t} type is an enumeration with the
 
following values: @code{CONFIG_ERR_NONE}, @code{CONFIG_ERR_FILE_IO},
 
@code{CONFIG_ERR_PARSE}. These represent success, a file I/O error,
 
and a parsing error, respectively.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_set_include_dir (@w{config_t *@var{config}}, @w{const char *@var{include_dir}})
 
@deftypefunx {const char *} config_get_include_dir (@w{const config_t *@var{config}})
 

	
 
@code{config_set_include_dir()} specifies the include directory,
 
@var{include_dir}, relative to which the files specified in
 
@samp{@@include} directives will be located for the configuration
 
@var{config}. By default, there is no include directory, and all
 
include files are expected to be relative to the current working
 
directory. If @var{include_dir} is @code{NULL}, the default behavior
 
is reinstated.
 

	
 
For example, if the include directory is set to @file{/usr/local/etc},
 
the include directive @samp{@@include "configs/extra.cfg"} would include the
 
file @file{/usr/local/etc/configs/extra.cfg}.
 

	
 
@code{config_get_include_dir()} returns the current include directory for the
 
configuration @var{config}, or @code{NULL} if none is set.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_set_auto_convert (@w{config_t *@var{config}}, @w{int @var{flag}})
 
@deftypefunx int config_get_auto_convert (@w{const config_t *@var{config}})
 

	
 
@code{config_set_auto_convert()} enables number auto-conversion for
 
the configuration @var{config} if @var{flag} is non-zero, and disables
 
it otherwise. When this feature is enabled, an attempt to retrieve a
 
floating point setting's value into an integer (or vice versa), or
 
store an integer to a floating point setting's value (or vice versa)
 
will cause the library to silently perform the necessary conversion
 
(possibly leading to loss of data), rather than reporting failure. By
 
default this feature is disabled.
 

	
 
@code{config_get_auto_convert()} returns @code{CONFIG_TRUE} if number
 
auto-conversion is currently enabled for @var{config}; otherwise it
 
returns @code{CONFIG_FALSE}.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_set_default_format (@w{config_t * @var{config}}, @w{short @var{format}})
 
@deftypefunx short config_get_default_format (@w{config_t * @var{config}})
 

	
 
These functions, which are implemented as macros, set and get the
 
default external format for settings in the configuration
 
@var{config}. If a non-default format has not been set for a setting
 
with @code{config_setting_set_format()}, this configuration-wide
 
default format will be used instead when that setting is written to a
 
file or stream.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_set_tab_width (@w{config_t * @var{config}}, @w{unsigned short @var{width}})
 
@deftypefunx {unsigned short} config_get_tab_width (@w{const config_t * @var{config}})
 

	
 
These functions, which are implemented as macros, set and get the tab
 
width for the configuration @var{config}. The tab width affects the
 
formatting of the configuration when it is written to a file or
 
stream: each level of nesting is indented by @var{width} spaces, or
 
by a single tab character if @var{width} is 0. The tab width has no
 
effect on parsing.
 

	
 
Valid tab widths range from 0 to 15. The default tab width is 2.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_lookup_int (@w{const config_t * @var{config}}, @w{const char * @var{path}}, @w{int * @var{value}})
 
@deftypefunx int config_lookup_int64 (@w{const config_t * @var{config}}, @w{const char * @var{path}}, @w{long long * @var{value}})
 
@deftypefunx int config_lookup_float (@w{const config_t * @var{config}}, @w{const char * @var{path}}, @w{double * @var{value}})
 
@deftypefunx int config_lookup_bool (@w{const config_t * @var{config}}, @w{const char * @var{path}}, @w{int * @var{value}})
 
@deftypefunx int config_lookup_string (@w{const config_t * @var{config}}, @w{const char * @var{path}}, @w{const char ** @var{value}})
 

	
 
These functions look up the value of the setting in the configuration
 
@var{config} specified by the path @var{path}. They store the value of
 
the setting at @var{value} and return @code{CONFIG_TRUE} on
 
success. If the setting was not found or if the type of the value did
 
not match the type requested, they leave the data pointed to by
 
@var{value} unmodified and return @code{CONFIG_FALSE}.
 

	
 
Storage for the string returned by @code{config_lookup_string()} is
 
managed by the library and released automatically when the setting is
 
destroyed or when the setting's value is changed; the string must not
 
be freed by the caller.
 

	
 
@end deftypefun
 

	
 
@deftypefun {config_setting_t *} config_lookup (@w{const config_t * @var{config}}, @w{const char * @var{path}})
 

	
 
This function locates the setting in the configuration @var{config}
 
specified by the path @var{path}. It returns a pointer to the
 
@code{config_setting_t} structure on success, or @code{NULL} if the
 
setting was not found.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_get_int (@w{const config_setting_t * @var{setting}})
 
@deftypefunx {long long} config_setting_get_int64 (@w{const config_setting_t * @var{setting}})
 
@deftypefunx double config_setting_get_float (@w{const config_setting_t * @var{setting}})
 
@deftypefunx int config_setting_get_bool (@w{const config_setting_t * @var{setting}})
 
@deftypefunx {const char *} config_setting_get_string (@w{const config_setting_t * @var{setting}})
 

	
 
These functions return the value of the given @var{setting}. If the
 
type of the setting does not match the type requested, a 0 or
 
@code{NULL} value is returned. Storage for the string returned by
 
@code{config_setting_get_string()} is managed by the library and
 
released automatically when the setting is destroyed or when the
 
setting's value is changed; the string must not be freed by the
 
caller.
 

	
 
@end deftypefun
 
@deftypefun int config_setting_set_int (@w{config_setting_t * @var{setting}}, @w{int @var{value}})
 
@deftypefunx int config_setting_set_int64 (@w{config_setting_t * @var{setting}}, @w{long long @var{value}})
 
@deftypefunx int config_setting_set_float (@w{config_setting_t * @var{setting}}, @w{double @var{value}})
 
@deftypefunx int config_setting_set_bool (@w{config_setting_t * @var{setting}}, @w{int @var{value}})
 
@deftypefunx int config_setting_set_string (@w{config_setting_t * @var{setting}}, @w{const char * @var{value}})
 

	
 
These functions set the value of the given @var{setting} to
 
@var{value}. On success, they return @code{CONFIG_TRUE}. If
 
the setting does not match the type of the value, they return
 
@code{CONFIG_FALSE}. @code{config_setting_set_string()} makes a copy
 
of the passed string @var{value}, so it may be subsequently freed or
 
modified by the caller without affecting the value of the setting.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_lookup_int (@w{const config_setting_t * @var{setting}}, @w{const char * @var{name}}, @w{int * @var{value}})
 
@deftypefunx int config_setting_lookup_int64 (@w{const config_setting_t * @var{setting}}, @w{const char * @var{name}}, @w{long long * @var{value}})
 
@deftypefunx int config_setting_lookup_float (@w{const config_setting_t * @var{setting}}, @w{const char * @var{name}}, @w{double * @var{value}})
 
@deftypefunx int config_setting_lookup_bool (@w{const config_setting_t * @var{setting}}, @w{const char * @var{name}}, @w{int * @var{value}})
 
@deftypefunx int config_setting_lookup_string (@w{const config_setting_t * @var{setting}}, @w{const char * @var{name}}, @w{const char ** @var{value}})
 

	
 
These functions look up the value of the child setting named
 
@var{name} of the setting @var{setting}. They store the value at
 
@var{value} and return @code{CONFIG_TRUE} on success. If the setting
 
was not found or if the type of the value did not match the type
 
requested, they leave the data pointed to by @var{value} unmodified
 
and return @code{CONFIG_FALSE}.
 

	
 
Storage for the string returned by @code{config_setting_lookup_string()} is
 
managed by the library and released automatically when the setting is
 
destroyed or when the setting's value is changed; the string must not
 
be freed by the caller.
 

	
 
@end deftypefun
 

	
 
@deftypefun short config_setting_get_format (@w{config_setting_t * @var{setting}})
 
@deftypefunx int config_setting_set_format (@w{config_setting_t * @var{setting}}, @w{short @var{format}})
 

	
 
These functions get and set the external format for the setting @var{setting}.
 

	
 
@tindex SettingFormat
 
@cindex format
 

	
 
The @var{format} must be one of the constants
 
@code{CONFIG_FORMAT_DEFAULT} or @code{CONFIG_FORMAT_HEX}. All settings
 
support the @code{CONFIG_FORMAT_DEFAULT} format. The
 
@code{CONFIG_FORMAT_HEX} format specifies hexadecimal formatting for
 
integer values, and hence only applies to settings of type
 
@code{CONFIG_TYPE_INT} and @code{CONFIG_TYPE_INT64}.  If @var{format}
 
is invalid for the given setting, it is ignored.
 

	
 
If a non-default format has not been set for the setting, @code{config_setting_get_format()} returns the default format for the configuration, as set by @code{config_set_default_format()}.
 

	
 
@code{config_setting_set_format()} returns @code{CONFIG_TRUE} on
 
success and @code{CONFIG_FALSE} on failure.
 

	
 
@end deftypefun
 

	
 

	
 
@deftypefun {config_setting_t *} config_setting_get_member (@w{config_setting_t * @var{setting}}, @w{const char * @var{name}})
 

	
 
This function fetches the child setting named @var{name} from the group
 
@var{setting}. It returns the requested setting on success, or
 
@code{NULL} if the setting was not found or if @var{setting} is not a
 
group.
 

	
 
@end deftypefun
 

	
 
@deftypefun {config_setting_t *} config_setting_get_elem (@w{const config_setting_t * @var{setting}}, @w{unsigned int @var{index}})
 

	
 
This function fetches the element at the given index @var{index} in the
 
setting @var{setting}, which must be an array, list, or group. It returns the
 
requested setting on success, or @code{NULL} if @var{index} is out of
 
range or if @var{setting} is not an array, list, or group.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_get_int_elem (@w{const config_setting_t * @var{setting}}, @w{int @var{index}})
 
@deftypefunx {long long} config_setting_get_int64_elem (@w{const config_setting_t * @var{setting}}, @w{int @var{index}})
 
@deftypefunx double config_setting_get_float_elem (@w{const config_setting_t * @var{setting}}, @w{int @var{index}})
 
@deftypefunx int config_setting_get_bool_elem (@w{const config_setting_t * @var{setting}}, @w{int @var{index}})
 
@deftypefunx {const char *} config_setting_get_string_elem (@w{const config_setting_t * @var{setting}}, @w{int @var{index}})
 

	
 
These functions return the value at the specified index @var{index} in the
 
setting @var{setting}. If the setting is not an array or list, or if
 
the type of the element does not match the type requested, or if
 
@var{index} is out of range, they return 0 or @code{NULL}. Storage for
 
the string returned by @code{config_setting_get_string_elem()} is
 
managed by the library and released automatically when the setting is
 
destroyed or when its value is changed; the string must not be freed
 
by the caller.
 
@end deftypefun
 

	
 
@deftypefun {config_setting_t *} config_setting_set_int_elem (@w{config_setting_t * @var{setting}}, @w{int @var{index}}, @w{int @var{value}})
 
@deftypefunx {config_setting_t *} config_setting_set_int64_elem (@w{config_setting_t * @var{setting}}, @w{int @var{index}}, @w{long long @var{value}})
 
@deftypefunx {config_setting_t *} config_setting_set_float_elem (@w{config_setting_t * @var{setting}}, @w{int @var{index}}, @w{double @var{value}})
 
@deftypefunx {config_setting_t *} config_setting_set_bool_elem (@w{config_setting_t * @var{setting}}, @w{int @var{index}}, @w{int @var{value}})
 
@deftypefunx {config_setting_t *} config_setting_set_string_elem (@w{config_setting_t * @var{setting}}, @w{int @var{index}}, @w{const char * @var{value}})
 

	
 
These functions set the value at the specified index @var{index} in the
 
setting @var{setting} to @var{value}. If @var{index} is negative, a
 
new element is added to the end of the array or list. On success,
 
these functions return a pointer to the setting representing the
 
element. If the setting is not an array or list, or if the setting is
 
an array and the type of the array does not match the type of the
 
value, or if @var{index} is out of range, they return
 
@code{NULL}. @code{config_setting_set_string_elem()} makes a copy of
 
the passed string @var{value}, so it may be subsequently freed or
 
modified by the caller without affecting the value of the setting.
 
@end deftypefun
 

	
 
@deftypefun {config_setting_t *} config_setting_add (@w{config_setting_t * @var{parent}}, @w{const char * @var{name}}, @w{int @var{type}})
 

	
 
This function adds a new child setting or element to the setting
 
@var{parent}, which must be a group, array, or list. If @var{parent}
 
is an array or list, the @var{name} parameter is ignored and may be
 
@code{NULL}.
 

	
 
The function returns the new setting on success, or @code{NULL} if
 
@var{parent} is not a group, array, or list; or if there is already a
 
child setting of @var{parent} named @var{name}; or if @var{type} is
 
invalid. If @var{type} is a scalar type, the new setting will have a
 
default value of 0, 0.0, @code{false}, or @code{NULL}, as appropriate.
 
@end deftypefun
 

	
 
@deftypefun int config_setting_remove (@w{config_setting_t * @var{parent}}, @w{const char * @var{name}})
 

	
 
This function removes and destroys the setting named @var{name} from
 
the parent setting @var{parent}, which must be a group. Any child
 
settings of the setting are recursively destroyed as well.
 

	
 
The function returns @code{CONFIG_TRUE} on success. If @var{parent} is
 
not a group, or if it has no setting with the given name, it returns
 
@code{CONFIG_FALSE}.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_remove_elem (@w{config_setting_t * @var{parent}}, @w{unsigned int @var{index}})
 

	
 
This function removes the child setting at the given index @var{index} from
 
the setting @var{parent}, which must be a group, list, or array. Any
 
child settings of the removed setting are recursively destroyed as
 
well.
 

	
 
The function returns @code{CONFIG_TRUE} on success. If @var{parent} is
 
not a group, list, or array, or if @var{index} is out of range, it returns
 
@code{CONFIG_FALSE}.
 

	
 
@end deftypefun
 

	
 
@deftypefun {config_setting_t *} config_root_setting (@w{const config_t * @var{config}})
 

	
 
This function returns the root setting for the configuration
 
@var{config}. The root setting is a group.
 

	
 
@end deftypefun
 

	
 
@deftypefun {const char *} config_setting_name (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the name of the given @var{setting}, or
 
@code{NULL} if the setting has no name. Storage for the returned
 
string is managed by the library and released automatically when the
 
setting is destroyed; the string must not be freed by the caller.
 

	
 
@end deftypefun
 

	
 
@deftypefun {config_setting_t *} config_setting_parent (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the parent setting of the given @var{setting},
 
or @code{NULL} if @var{setting} is the root setting.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_is_root (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns @code{CONFIG_TRUE} if the given @var{setting} is
 
the root setting, and @code{CONFIG_FALSE} otherwise.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_index (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the index of the given @var{setting} within its
 
parent setting. If @var{setting} is the root setting, this function
 
returns -1.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_length (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the number of settings in a group, or the number of
 
elements in a list or array. For other types of settings, it returns
 
0.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_type (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the type of the given @var{setting}. The return
 
value is one of the constants
 
@code{CONFIG_TYPE_INT}, @code{CONFIG_TYPE_INT64}, @code{CONFIG_TYPE_FLOAT},
 
@code{CONFIG_TYPE_STRING}, @code{CONFIG_TYPE_BOOL},
 
@code{CONFIG_TYPE_ARRAY}, @code{CONFIG_TYPE_LIST}, or @code{CONFIG_TYPE_GROUP}.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_is_group (@w{const config_setting_t * @var{setting}})
 
@deftypefunx int config_setting_is_array (@w{const config_setting_t * @var{setting}})
 
@deftypefunx int config_setting_is_list (@w{const config_setting_t * @var{setting}})
 

	
 
These convenience functions, which are implemented as macros, test if
 
the setting @var{setting} is of a given type. They return
 
@code{CONFIG_TRUE} or @code{CONFIG_FALSE}.
 

	
 
@end deftypefun
 

	
 
@deftypefun int config_setting_is_aggregate (@w{const config_setting_t * @var{setting}})
 
@deftypefunx int config_setting_is_scalar (@w{const config_setting_t * @var{setting}})
 
@deftypefunx int config_setting_is_number (@w{const config_setting_t * @var{setting}})
 

	
 
@cindex aggregate value
 
These convenience functions, which are implemented as macros, test if
 
the setting @var{setting} is of an aggregate type (a group, array, or
 
list), of a scalar type (integer, 64-bit integer, floating point,
 
boolean, or string), and of a number (integer, 64-bit integer, or
 
floating point), respectively. They return @code{CONFIG_TRUE} or
 
@code{CONFIG_FALSE}.
 

	
 
@end deftypefun
 

	
 
@deftypefun {const char *} config_setting_source_file (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the name of the file from which the setting
 
@var{setting} was read, or NULL if the setting was not read from a
 
file. This information is useful for reporting application-level
 
errors. Storage for the returned string is managed by the library and
 
released automatically when the configuration is destroyed; the
 
string must not be freed by the caller.
 

	
 
@end deftypefun
 

	
 
@deftypefun {unsigned int} config_setting_source_line (@w{const config_setting_t * @var{setting}})
 

	
 
This function returns the line number of the configuration file or
 
stream at which the setting @var{setting} was read, or 0 if no line
 
number is available. This information is useful for reporting
 
application-level errors.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_setting_set_hook (@w{config_setting_t * @var{setting}}, @w{void * @var{hook}})
 
@deftypefunx {void *} config_setting_get_hook (@w{const config_setting_t * @var{setting}})
 

	
 
These functions make it possible to attach arbitrary data to each
 
setting structure, for instance a ``wrapper'' or ``peer'' object written in
 
another programming language. The destructor function, if one has been
 
supplied via a call to @code{config_set_destructor()}, will be called
 
by the library to dispose of this data when the setting itself is
 
destroyed. There is no default destructor.
 

	
 
@end deftypefun
 

	
 
@deftypefun void config_set_destructor (@w{config_t * @var{config}}, @w{void (* @var{destructor})(void *)})
 

	
 
This function assigns the destructor function @var{destructor} for the
 
configuration @var{config}. This function accepts a single @code{void
 
*} argument and has no return value. See
 
@code{config_setting_set_hook()} above for more information.
 

	
 
@end deftypefun
 

	
 
@node The C++ API, Example Programs, The C API, Top
 
@comment  node-name,  next,  previous,  up
 
@chapter The C++ API
 

	
 
@tindex Config
 
@tindex Setting
 
This chapter describes the C++ library API. The class @code{Config}
 
represents a configuration, and the class @code{Setting} represents a
 
configuration setting. Note that by design, neither of these classes
 
provides a public copy constructor or assignment operator. Therefore,
 
instances of these classes may only be passed between functions via
 
references or pointers.
 

	
 
@tindex ConfigException
 
The library defines a group of exceptions, all of which extend the
 
common base exception @code{ConfigException}.
 

	
 
@tindex SettingTypeException
 
A @code{SettingTypeException} is thrown when the type of a setting's
 
value does not match the type requested.
 

	
 
@tindex SettingNotFoundException
 
A @code{SettingNotFoundException} is thrown when a setting is not found.
 

	
 
@tindex SettingNameException
 
A @code{SettingNameException} is thrown when an attempt is made to add
 
a new setting with a non-unique or invalid name.
 

	
 
@tindex ParseException
 
A @code{ParseException} is thrown when a parse error occurs while
 
reading a configuration from a stream.
 

	
 
@tindex FileIOException
 
A @code{FileIOException} is thrown when an I/O error occurs while
 
reading/writing a configuration from/to a file.
 

	
 
@tindex SettingException
 
@code{SettingTypeException}, @code{SettingNotFoundException}, and
 
@code{SettingNameException} all extend the common base
 
exception @code{SettingException}, which provides the following method:
 

	
 
@deftypemethod SettingException {const char *} getPath ()
 

	
 
Returns the path to the setting associated with the exception, or
 
@code{NULL} if there is no applicable path.
 

	
 
@end deftypemethod
 

	
 
The remainder of this chapter describes the methods for manipulating
 
configurations and configuration settings.
 

	
 
@deftypemethod Config {} Config ()
 
@deftypemethodx Config {} ~Config ()
 

	
 
These methods create and destroy @code{Config} objects. 
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void read (@w{FILE * @var{stream}})
 
@deftypemethodx Config void write (@w{FILE * @var{stream}})
 

	
 
The @code{read()} method reads and parses a configuration from the given
 
@var{stream}. A @code{ParseException} is thrown if a parse error occurs.
 

	
 
The @code{write()} method writes the configuration to the given @var{stream}.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void readFile (@w{const char * @var{filename}})
 
@deftypemethodx Config void writeFile (@w{const char * @var{filename}})
 

	
 
The @code{readFile()} method reads and parses a configuration from the
 
file named @var{filename}. A @code{ParseException} is thrown if a
 
parse error occurs. A @code{FileIOException} is thrown if the file
 
cannot be read.
 

	
 
The @code{writeFile()} method writes the configuration to the file
 
named @var{filename}. A @code{FileIOException} is thrown if the file cannot
 
be written.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void readString (@w{const char * @var{str}})
 
@deftypemethodx Config void readString (@w{const std::string &@var{str}})
 

	
 
These methods read and parse a configuration from the string
 
@var{str}. A @code{ParseException} is thrown if a parse error occurs.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod ParseException {const char *} getError ()
 
@deftypemethodx ParseException {const char *} getFile ()
 
@deftypemethodx ParseException int getLine ()
 

	
 
If a call to @code{readFile()}, @code{readString()}, or @code{read()}
 
resulted in a @code{ParseException}, these methods can be called on
 
the exception object to obtain the text, filename, and line number of
 
the parse error. Storage for the strings returned by @code{getError()}
 
and @code{getFile()} are managed by the library; the strings must not
 
be freed by the caller.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void setIncludeDir (@w{const char *@var{includeDir}})
 
@deftypemethodx Config {const char *} getIncludeDir ()
 

	
 
@code{setIncludeDir()} specifies the include directory,
 
@var{includeDir}, relative to which the files specified in
 
@samp{@@include} directives will be located for the configuration. By
 
default, there is no include directory, and all include files are
 
expected to be relative to the current working directory. If
 
@var{includeDir} is @code{NULL}, the default behavior is reinstated.
 

	
 
For example, if the include directory is set to @file{/usr/local/etc},
 
the include directive @samp{@@include "configs/extra.cfg"} would include the
 
file @file{/usr/local/etc/configs/extra.cfg}.
 

	
 
@code{getIncludeDir()} returns the current include directory for the
 
configuration, or @code{NULL} if none is set.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void setAutoConvert (bool @var{flag})
 
@deftypemethodx Config bool getAutoConvert ()
 

	
 
@code{setAutoConvert()} enables number auto-conversion for the
 
configuration if @var{flag} is @code{true}, and disables it
 
otherwise. When this feature is enabled, an attempt to assign a
 
floating point setting to an integer (or vice versa), or
 
assign an integer to a floating point setting (or vice versa) will
 
cause the library to silently perform the necessary conversion
 
(possibly leading to loss of data), rather than throwing a
 
@code{SettingTypeException}. By default this feature is disabled.
 

	
 
@code{getAutoConvert()} returns @code{true} if number auto-conversion
 
is currently enabled for the configuration; otherwise it returns
 
@code{false}.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void setDefaultFormat (@w{Setting::Format @var{format}})
 
@deftypemethodx Config Setting::Format getDefaultFormat ()
 

	
 
These methods set and get the default external format for settings in
 
the configuration. If a non-default format has not been set for a
 
setting with @code{Setting::setFormat()}, this configuration-wide
 
default format will be used instead when that setting is written to a
 
file or stream.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config void setTabWidth (@w{unsigned short @var{width}})
 
@deftypemethodx Config {unsigned short} getTabWidth ()
 

	
 
These methods set and get the tab width for the configuration. The tab
 
width affects the formatting of the configuration when it is written
 
to a file or stream: each level of nesting is indented by @var{width}
 
spaces, or by a single tab character if @var{width} is 0. The tab
 
width has no effect on parsing.
 

	
 
Valid tab widths range from 0 to 15. The default tab width is 2.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config {Setting &} getRoot ()
 

	
 
This method returns the root setting for the configuration, which is a group.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config {Setting &} lookup (@w{const std::string &@var{path}})
 
@deftypemethodx Config {Setting &} lookup (@w{const char * @var{path}})
 

	
 
These methods locate the setting specified by the path @var{path}. If
 
the requested setting is not found, a @code{SettingNotFoundException} is
 
thrown.
 

	
 
@end deftypemethod
 
@deftypemethod Config bool exists (@w{const std::string &@var{path}})
 
@deftypemethodx Config bool exists (@w{const char *@var{path}})
 

	
 
These methods test if a setting with the given @var{path} exists in
 
the configuration. They return @code{true} if the setting exists, and
 
@code{false} otherwise. These methods do not throw exceptions.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Config bool lookupValue (@w{const char *@var{path}}, @w{bool &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{bool &@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{int &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{int &@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{unsigned int &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{unsigned int &@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{long long &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{long long &@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{float &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{float &@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{double &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{double &@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{const char *&@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{const char *&@var{value}})
 

	
 
@deftypemethodx Config bool lookupValue (@w{const char *@var{path}}, @w{std::string &@var{value}})
 
@deftypemethodx Config bool lookupValue (@w{const std::string &@var{path}}, @w{std::string &@var{value}})
 

	
 
These are convenience methods for looking up the value of a setting
 
with the given @var{path}. If the setting is found and is of an
 
appropriate type, the value is stored in @var{value} and the method
 
returns @code{true}. Otherwise, @var{value} is left unmodified and the
 
method returns @code{false}. These methods do not throw exceptions.
 

	
 
Storage for @w{@i{const char *}} values is managed by the library and
 
released automatically when the setting is destroyed or when its value
 
is changed; the string must not be freed by the caller. For safety and
 
convenience, always assigning string values to a @code{std::string} is
 
suggested.
 

	
 
Since these methods have boolean return values and do not throw
 
exceptions, they can be used within boolean logic expressions. The following
 
example presents a concise way to look up three values at once and
 
perform error handling if any of them are not found or are of the
 
wrong type:
 

	
 
@sp 1
 
@cartouche
 
@smallexample
 
int var1;
 
double var2;
 
const char *var3;
 

	
 
if(config.lookupValue("values.var1", var1)
 
   && config.lookupValue("values.var2", var2)
 
   && config.lookupValue("values.var3", var3))
 
@{
 
  // use var1, var2, var3
 
@}
 
else
 
@{
 
  // error handling here
 
@}
 
@end smallexample
 
@end cartouche
 

	
 
This approach also takes advantage of the short-circuit evaluation rules
 
of C++, e.g., if the first lookup fails (returning @code{false}), the
 
remaining lookups are skipped entirely.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {} {operator bool ()}
 
@deftypemethodx Setting {} {operator int ()}
 
@deftypemethodx Setting {} {operator unsigned int ()}
 
@deftypemethodx Setting {} {operator long ()}
 
@deftypemethodx Setting {} {operator unsigned long ()}
 
@deftypemethodx Setting {} {operator long long ()}
 
@deftypemethodx Setting {} {operator unsigned long long ()}
 
@deftypemethodx Setting {} {operator float ()}
 
@deftypemethodx Setting {} {operator double ()}
 
@deftypemethodx Setting {} {operator const char * ()}
 
@deftypemethodx Setting {} {operator std::string ()}
 
@deftypemethodx Setting {const char *} c_str ()
 

	
 
These cast operators allow a @code{Setting} object to be assigned to a
 
variable of type @i{bool} if it is of type @code{TypeBoolean};
 
@i{int}, @i{unsigned int}; @code{long long} or @code{unsigned long long} if
 
it is of type @code{TypeInt64}, @i{float} or @i{double} if it is of type
 
@code{TypeFloat}; or @w{@i{const char *}} or @i{std::string} if it is
 
of type @code{TypeString}.
 

	
 
Values of type @code{TypeInt} or @code{TypeInt64} may be assigned to
 
variables of type @i{long}, or @i{unsigned long}, depending on the
 
sizes of those types on the host system.
 

	
 
Storage for @w{@i{const char *}} return values is managed by the
 
library and released automatically when the setting is destroyed or
 
when its value is changed; the string must not be freed by the
 
caller. For safety and convenience, always assigning string return
 
values to a @code{std::string} is suggested.
 

	
 
The following examples demonstrate this usage:
 

	
 
@cartouche
 
@smallexample
 
long width = config.lookup("application.window.size.w");
 

	
 
bool splashScreen = config.lookup("application.splash_screen");
 

	
 
std::string title = config.lookup("application.window.title");
 
@end smallexample
 
@end cartouche
 

	
 
Note that certain conversions can lead to loss of precision or
 
clipping of values, e.g., assigning a negative value to an @i{unsigned
 
int} (in which case the value will be treated as 0), or a
 
double-precision value to a @i{float}. The library does not treat
 
these lossy conversions as errors.
 

	
 
Perhaps surprisingly, the following code in particular will cause a
 
compiler error:
 

	
 
@cartouche
 
@smallexample
 
std::string title;
 
.
 
.
 
.
 
title = config.lookup("application.window.title");
 
@end smallexample
 
@end cartouche
 

	
 
This is because the assignment operator of @code{std::string} is being
 
invoked with a @code{Setting &} as an argument. The compiler is unable
 
to make an implicit conversion because both the @code{const char *}
 
and the @code{std::string} cast operators of @code{Setting} are
 
equally appropriate. This is not a bug in @i{libconfig}; providing
 
only the @code{const char *} cast operator would resolve this
 
particular ambiguity, but would cause assignments to
 
@code{std::string} like the one in the previous example to produce a
 
compiler error. (To understand why, see section 11.4.1 of @i{The C++
 
Programming Language}.)
 

	
 
The solution to this problem is to use an explicit conversion that
 
avoids the construction of an intermediate @code{std::string} object,
 
as follows:
 

	
 
@cartouche
 
@smallexample
 
std::string title;
 
.
 
.
 
.
 
title = (const char *)config.lookup("application.window.title");
 
@end smallexample
 
@end cartouche
 

	
 
Or, alternatively, use the @code{c_str()} method, which has the same effect:
 

	
 
@cartouche
 
@smallexample
 
std::string title;
 
.
 
.
 
.
 
title = config.lookup("application.window.title").c_str();
 
@end smallexample
 
@end cartouche
 

	
 
If the assignment is invalid due to a type mismatch, a
 
@code{SettingTypeException} is thrown.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {Setting &} operator= (@w{bool @var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{int @var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{long @var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{const long long &@var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{float @var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{const double &@var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{const char *@var{value}})
 
@deftypemethodx Setting {Setting &} operator= (@w{const std::string &@var{value}})
 

	
 
These assignment operators allow values of type @i{bool}, @i{int},
 
@i{long}, @i{long long}, @i{float}, @i{double}, @i{const char *}, and
 
@i{std::string} to be assigned to a setting. In the case of strings,
 
the library makes a copy of the passed string @var{value}, so it may
 
be subsequently freed or modified by the caller without affecting the
 
value of the setting.
 

	
 
The following example code looks up a (presumably) integer setting
 
and changes its value:
 

	
 
@cartouche
 
@smallexample
 
Setting &setting = config.lookup("application.window.size.w");
 
setting = 1024;
 
@end smallexample
 
@end cartouche
 

	
 
If the assignment is invalid due to a type mismatch, a
 
@code{SettingTypeException} is thrown.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {Setting &} {operator[]} (@w{int @var{index}})
 
@deftypemethodx Setting {Setting &} {operator[]} (@w{const std::string &@var{name}})
 
@deftypemethodx Setting {Setting &} {operator[]} (@w{const char *@var{name}})
 

	
 
A @code{Setting} object may be subscripted with an integer index
 
@var{index} if it is an array or list, or with either a string
 
@var{name} or an integer index @var{index} if it is a group. For example,
 
the following code would produce the string @samp{Last Name} when
 
applied to the example configuration in @ref{Configuration Files}.
 

	
 
@cartouche
 
@smallexample
 
Setting& setting = config.lookup("application.misc");
 
const char *s = setting["columns"][0];
 
@end smallexample
 
@end cartouche
 

	
 
If the setting is not an array, list, or group, a
 
@code{SettingTypeException} is thrown. If the subscript (@var{index}
 
or @var{name}) does not refer to a valid element, a
 
@code{SettingNotFoundException} is thrown.
 

	
 
Iterating over a group's child settings with an integer index will
 
return the settings in the same order that they appear in the
 
configuration.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting bool lookupValue (@w{const char *@var{name}}, @w{bool &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{bool &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{int &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{int &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{unsigned int &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{unsigned int &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{long long &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{long long &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{unsigned long long &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{unsigned long long &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{float &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{float &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{double &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{double &@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{const char *&@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{const char *&@var{value}})
 

	
 
@deftypemethodx Setting bool lookupValue (@w{const char *@var{name}}, @w{std::string &@var{value}})
 
@deftypemethodx Setting bool lookupValue (@w{const std::string &@var{name}}, @w{std::string &@var{value}})
 

	
 
These are convenience methods for looking up the value of a child setting
 
with the given @var{name}. If the setting is found and is of an
 
appropriate type, the value is stored in @var{value} and the method
 
returns @code{true}. Otherwise, @var{value} is left unmodified and the
 
method returns @code{false}. These methods do not throw exceptions.
 

	
 
Storage for @w{@i{const char *}} values is managed by the library and
 
released automatically when the setting is destroyed or when its value
 
is changed; the string must not be freed by the caller. For safety and
 
convenience, always assigning string values to a @code{std::string} is
 
suggested.
 

	
 
Since these methods have boolean return values and do not throw
 
exceptions, they can be used within boolean logic expressions. The following
 
example presents a concise way to look up three values at once and
 
perform error handling if any of them are not found or are of the
 
wrong type:
 

	
 
@sp 1
 
@cartouche
 
@smallexample
 
int var1;
 
double var2;
 
const char *var3;
 

	
 
if(setting.lookupValue("var1", var1)
 
   && setting.lookupValue("var2", var2)
 
   && setting.lookupValue("var3", var3))
 
@{
 
  // use var1, var2, var3
 
@}
 
else
 
@{
 
  // error handling here
 
@}
 
@end smallexample
 
@end cartouche
 

	
 
This approach also takes advantage of the short-circuit evaluation
 
rules of C++, e.g., if the first lookup fails (returning @code{false}), the
 
remaining lookups are skipped entirely.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {Setting &} add (@w{const std::string &@var{name}}, @w{Setting::Type @var{type}})
 
@deftypemethodx Setting {Setting &} add (@w{const char *@var{name}}, @w{Setting::Type @var{type}})
 

	
 
These methods add a new child setting with the given @var{name} and
 
@var{type} to the setting, which must be a group. They return a
 
reference to the new setting. If the setting already has a child
 
setting with the given name, or if the name is invalid, a
 
@code{SettingNameException} is thrown. If the setting is not a group,
 
a @code{SettingTypeException} is thrown.
 

	
 
Once a setting has been created, neither its name nor type can be
 
changed.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {Setting &} add (@w{Setting::Type @var{type}})
 

	
 
This method adds a new element to the setting, which must be of type
 
@code{TypeArray} or @code{TypeList}. If the setting is an array which
 
currently has zero elements, the @var{type} parameter (which must be
 
@code{TypeInt}, @code{TypeInt64}, @code{TypeFloat}, @code{TypeBool},
 
or @code{TypeString}) determines the type for the array; otherwise it
 
must match the type of the existing elements in the array.
 

	
 
The method returns the new setting on success. If @var{type} is a
 
scalar type, the new setting will have a default value of 0, 0.0,
 
@code{false}, or @code{NULL}, as appropriate.
 

	
 
The method throws a @code{SettingTypeException} if the setting is not
 
an array or list, or if @var{type} is invalid.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting void remove (@w{const std::string &@var{name}})
 
@deftypemethodx Setting void remove (@w{const char *@var{name}})
 

	
 
These methods remove the child setting with the given @var{name} from
 
the setting, which must be a group. Any child settings of the removed
 
setting are recursively destroyed as well.
 

	
 
If the setting is not a group, a @code{SettingTypeException} is
 
thrown.  If the setting does not have a child setting with the given
 
name, a @code{SettingNotFoundException} is thrown.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting void remove (@w{unsigned int @var{index}})
 

	
 
This method removes the child setting at the given index @var{index} from
 
the setting, which must be a group, list, or array. Any child settings
 
of the removed setting are recursively destroyed as well.
 

	
 
If the setting is not a group, list, or array, a
 
@code{SettingTypeException} is thrown.  If @var{index} is out of range,
 
a @code{SettingNotFoundException} is thrown.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {const char *} getName ()
 

	
 
This method returns the name of the setting, or @code{NULL} if the
 
setting has no name. Storage for the returned string is managed by the
 
library and released automatically when the setting is destroyed; the
 
string must not be freed by the caller. For safety and convenience,
 
consider assigning the return value to a @code{std::string}.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {std::string} getPath ()
 

	
 
This method returns the complete dot-separated path to the
 
setting. Settings which do not have a name (list and array elements)
 
are represented by their index in square brackets.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {Setting &} getParent ()
 

	
 
This method returns the parent setting of the setting. If the setting
 
is the root setting, a @code{SettingNotFoundException} is thrown.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting bool isRoot ()
 

	
 
This method returns @code{true} if the setting is the root setting, and
 
@code{false} otherwise.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting int getIndex ()
 

	
 
This method returns the index of the setting within its parent
 
setting. When applied to the root setting, this method returns -1.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting Setting::Type getType ()
 

	
 
@tindex Setting::Type
 
This method returns the type of the setting. The
 
@code{Setting::Type} enumeration consists of the following constants:
 
@code{TypeInt}, @code{TypeInt64}, @code{TypeFloat}, @code{TypeString},
 
@code{TypeBoolean}, @code{TypeArray}, @code{TypeList}, and
 
@code{TypeGroup}.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting Setting::Format getFormat ()
 
@deftypemethodx Setting void setFormat (@w{Setting::Format @var{format}})
 

	
 
These methods get and set the external format for the setting.
 

	
 
@tindex Setting::Format
 
The @var{Setting::Format} enumeration consists of the following
 
constants: @code{FormatDefault} and @code{FormatHex}. All settings
 
support the @code{FormatDefault} format. The @code{FormatHex} format
 
specifies hexadecimal formatting for integer values, and hence only
 
applies to settings of type @code{TypeInt} and @code{TypeInt64}. If
 
@var{format} is invalid for the given setting, it is ignored.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting bool exists (@w{const std::string &@var{name}})
 
@deftypemethodx Setting bool exists (@w{const char *@var{name}})
 

	
 
These methods test if the setting has a child setting with the given
 
@var{name}. They return @code{true} if the setting exists, and
 
@code{false} otherwise. These methods do not throw exceptions.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting int getLength ()
 

	
 
This method returns the number of settings in a group, or the number of
 
elements in a list or array. For other types of settings, it returns
 
0.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting bool isGroup ()
 
@deftypemethodx Setting bool isArray ()
 
@deftypemethodx Setting bool isList ()
 

	
 
These convenience methods test if a setting is of a given type.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting bool isAggregate ()
 
@deftypemethodx Setting bool isScalar ()
 
@deftypemethodx Setting bool isNumber ()
 

	
 
These convenience methods test if a setting is of an aggregate type (a
 
group, array, or list), of a scalar type (integer, 64-bit integer,
 
floating point, boolean, or string), and of a number (integer, 64-bit
 
integer, or floating point), respectively.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {const char *} getSourceFile ()
 

	
 
This function returns the name of the file from which the setting was
 
read, or NULL if the setting was not read from a file. This
 
information is useful for reporting application-level errors. Storage
 
for the returned string is managed by the library and released
 
automatically when the configuration is destroyed; the string must
 
not be freed by the caller.
 

	
 
@end deftypemethod
 

	
 
@deftypemethod Setting {unsigned int} getSourceLine ()
 

	
 
This function returns the line number of the configuration file or
 
stream at which the setting @var{setting} was read, or 0 if no line
 
number is available. This information is useful for reporting
 
application-level errors.
 

	
 
@end deftypemethod
 

	
 
@node Example Programs, Configuration File Grammar, The C++ API, Top
 
@comment  node-name,  next,  previous,  up
 
@chapter Example Programs
 

	
 
Practical example programs that illustrate how to use @i{libconfig}
 
from both C and C++ are included in the @file{examples} subdirectory
 
of the distribution. These examples include:
 

	
 
@table @file
 

	
 
@item examples/c/example1.c
 
An example C program that reads a configuration from an existing file
 
@file{example.cfg} (also located in @file{examples/c}) and displays
 
some of its contents.
 

	
 
@item examples/c++/example1.cpp
 
The C++ equivalent of @file{example1.c}.
 

	
 
@item examples/c/example2.c
 
An example C program that reads a configuration from an existing file
 
@file{example.cfg} (also located in @file{examples/c}), adds new
 
settings to the configuration, and writes the updated configuration to
 
another file.
 

	
 
@item examples/c++/example2.cpp
 
The C++ equivalent of @file{example2.c}
 

	
 
@item examples/c/example3.c
 
An example C program that constructs a new configuration in memory and writes it to a file.
 

	
 
@item examples/c++/example3.cpp
 
The C++ equivalent of @file{example3.c}
 

	
 
@end table
 

	
 
@node Configuration File Grammar, License, Example Programs, Top
 
@comment  node-name,  next,  previous,  up
 
@chapter Configuration File Grammar
 

	
 
Below is the BNF grammar for configuration files. Comments and include
 
directives are not part of the grammar, so they are not included here.
 

	
 
@sp 1
 
@example
 
configuration = setting-list | empty
 

	
 
setting-list = setting | setting-list setting
 

	
 
setting = name (":" | "=") value (";" | "," | empty)
 

	
 
value = scalar-value | array | list | group
 

	
 
value-list = value | value-list "," value
 

	
 
scalar-value = boolean | integer | integer64 | hex | hex64 | float
 
               | string
 

	
 
scalar-value-list = scalar-value | scalar-value-list "," scalar-value
 

	
 
array = "[" (scalar-value-list | empty) "]"
 

	
 
list = "(" (value-list | empty) ")"
 

	
 
group = "@{" (setting-list | empty) "@}"
 

	
 
empty =
 
@end example
 

	
 
@sp 2
 
Terminals are defined below as regular expressions:
 
@sp 1
 

	
 
@multitable @columnfractions .2 .8
 
@item @code{boolean} @tab
 
@code{([Tt][Rr][Uu][Ee])|([Ff][Aa][Ll][Ss][Ee])}
 
@item @code{string} @tab
 
@code{\"([^\"\\]|\\.)*\"}
 
@item @code{name} @tab
 
@code{[A-Za-z\*][-A-Za-z0-9_\*]*}
 
@item @code{integer} @tab
 
@code{[-+]?[0-9]+}
 
@item @code{integer64} @tab
 
@code{[-+]?[0-9]+L(L)?}
 
@item @code{hex} @tab
 
@code{0[Xx][0-9A-Fa-f]+}
 
@item @code{hex64} @tab
 
@code{0[Xx][0-9A-Fa-f]+L(L)?}
 
@item @code{float} @tab
 
@code{([-+]?([0-9]*)?\.[0-9]*([eE][-+]?[0-9]+)?)|([-+]([0-9]+)(\.[0-9]*)?[eE][-+]?[0-9]+)}
 
@end multitable
 

	
 
@node License, Function Index, Configuration File Grammar, Top
 
@comment  node-name,  next,  previous,  up
 
@appendix License
 

	
 
@include LGPL.texi
 

	
 
@node Function Index, Type Index, License, Top
 
@comment  node-name,  next,  previous,  up
 
@unnumbered Function Index
 

	
 
@printindex fn
 

	
 
@node Type Index, Concept Index, Function Index, Top
 
@comment  node-name,  next,  previous,  up
 
@unnumbered Type Index
 

	
 
@printindex tp
 

	
 
@node Concept Index, , Type Index, Top
 
@comment  node-name,  next,  previous,  up
 
@unnumbered Concept Index
 

	
 
@printindex cp
 

	
 
@bye