Files @ d6faa5ffcedf
Branch filter:

Location: MD/arcos/fish90/src/genbunal.f90

Margreet Nool
install arcos
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
!
!     file genbun.f
!
!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!  .                                                             .
!  .                  copyright (c) 2004 by UCAR                 .
!  .                                                             .
!  .       UNIVERSITY CORPORATION for ATMOSPHERIC RESEARCH       .
!  .                                                             .
!  .                      all rights reserved                    .
!  .                                                             .
!  .                                                             .
!  .                      FISHPACK version 5.0                   .
!  .                                                             .
!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!
!     * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
!     *                                                               *
!     *                        F I S H P A C K                        *
!     *                                                               *
!     *                                                               *
!     *     A PACKAGE OF FORTRAN SUBPROGRAMS FOR THE SOLUTION OF      *
!     *                                                               *
!     *      SEPARABLE ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS        *
!     *                                                               *
!     *                  (Version 5.0 , JUNE 2004)                    *
!     *                                                               *
!     *                             BY                                *
!     *                                                               *
!     *        JOHN ADAMS, PAUL SWARZTRAUBER AND ROLAND SWEET         *
!     *                                                               *
!     *                             OF                                *
!     *                                                               *
!     *         THE NATIONAL CENTER FOR ATMOSPHERIC RESEARCH          *
!     *                                                               *
!     *                BOULDER, COLORADO  (80307)  U.S.A.             *
!     *                                                               *
!     *                   WHICH IS SPONSORED BY                       *
!     *                                                               *
!     *              THE NATIONAL SCIENCE FOUNDATION                  *
!     *                                                               *
!     * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
!
!     SUBROUTINE GENBUN (NPEROD,N,MPEROD,M,A,B,C,IDIMY,Y,IERROR)
!
!
! DIMENSION OF           A(M),B(M),C(M),Y(IDIMY,N)
! ARGUMENTS
!
! LATEST REVISION        JUNE 2004
!
! PURPOSE                THE NAME OF THIS PACKAGE IS A MNEMONIC FOR THE
!                        GENERALIZED BUNEMAN ALGORITHM.
!
!                        IT SOLVES THE REAL LINEAR SYSTEM OF EQUATIONS
!
!                        A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J)
!                        + X(I,J-1) - 2.*X(I,J) + X(I,J+1) = Y(I,J)
!
!                        FOR I = 1,2,...,M  AND  J = 1,2,...,N.
!
!                        INDICES I+1 AND I-1 ARE EVALUATED MODULO M,
!                        I.E., X(0,J) = X(M,J) AND X(M+1,J) = X(1,J),
!                        AND X(I,0) MAY EQUAL 0, X(I,2), OR X(I,N),
!                        AND X(I,N+1) MAY EQUAL 0, X(I,N-1), OR X(I,1)
!                        DEPENDING ON AN INPUT PARAMETER.
!
! USAGE                  CALL GENBUN (NPEROD,N,MPEROD,M,A,B,C,IDIMY,Y,
!                                     IERROR)
!
! ARGUMENTS
!
! ON INPUT               NPEROD
!
!                          INDICATES THE VALUES THAT X(I,0) AND
!                          X(I,N+1) ARE ASSUMED TO HAVE.
!
!                          = 0  IF X(I,0) = X(I,N) AND X(I,N+1) =
!                               X(I,1).
!                          = 1  IF X(I,0) = X(I,N+1) = 0  .
!                          = 2  IF X(I,0) = 0 AND X(I,N+1) = X(I,N-1).
!                          = 3  IF X(I,0) = X(I,2) AND X(I,N+1) =
!                               X(I,N-1).
!                          = 4  IF X(I,0) = X(I,2) AND X(I,N+1) = 0.
!
!                        N
!                          THE NUMBER OF UNKNOWNS IN THE J-DIRECTION.
!                          N MUST BE GREATER THAN 2.
!
!                        MPEROD
!                          = 0 IF A(1) AND C(M) ARE NOT ZERO
!                          = 1 IF A(1) = C(M) = 0
!
!                        M
!                          THE NUMBER OF UNKNOWNS IN THE I-DIRECTION.
!                          N MUST BE GREATER THAN 2.
!
!                        A,B,C
!                          ONE-DIMENSIONAL ARRAYS OF LENGTH M THAT
!                          SPECIFY THE COEFFICIENTS IN THE LINEAR
!                          EQUATIONS GIVEN ABOVE.  IF MPEROD = 0
!                          THE ARRAY ELEMENTS MUST NOT DEPEND UPON
!                          THE INDEX I, BUT MUST BE CONSTANT.
!                          SPECIFICALLY, THE SUBROUTINE CHECKS THE
!                          FOLLOWING CONDITION .
!
!                            A(I) = C(1)
!                            C(I) = C(1)
!                            B(I) = B(1)
!
!                          FOR I=1,2,...,M.
!
!                        IDIMY
!                          THE ROW (OR FIRST) DIMENSION OF THE
!                          TWO-DIMENSIONAL ARRAY Y AS IT APPEARS
!                          IN THE PROGRAM CALLING GENBUN.
!                          THIS PARAMETER IS USED TO SPECIFY THE
!                          VARIABLE DIMENSION OF Y.
!                          IDIMY MUST BE AT LEAST M.
!
!                        Y
!                          A TWO-DIMENSIONAL COMPLEX ARRAY THAT
!                          SPECIFIES THE VALUES OF THE RIGHT SIDE
!                          OF THE LINEAR SYSTEM OF EQUATIONS GIVEN
!                          ABOVE.
!                          Y MUST BE DIMENSIONED AT LEAST M*N.
!
!
!  ON OUTPUT             Y
!
!                          CONTAINS THE SOLUTION X.
!
!                        IERROR
!                          AN ERROR FLAG WHICH INDICATES INVALID
!                          INPUT PARAMETERS  EXCEPT FOR NUMBER
!                          ZERO, A SOLUTION IS NOT ATTEMPTED.
!
!                          = 0  NO ERROR.
!                          = 1  M .LE. 2  .
!                          = 2  N .LE. 2
!                          = 3  IDIMY .LT. M
!                          = 4  NPEROD .LT. 0 OR NPEROD .GT. 4
!                          = 5  MPEROD .LT. 0 OR MPEROD .GT. 1
!                          = 6  A(I) .NE. C(1) OR C(I) .NE. C(1) OR
!                               B(I) .NE. B(1) FOR
!                               SOME I=1,2,...,M.
!                          = 7  A(1) .NE. 0 OR C(M) .NE. 0 AND
!                                 MPEROD = 1
!                          = 20 If the dynamic allocation of real and
!                               complex work space required for solution
!                               fails (for example if N,M are too large
!                               for your computer)
!
!
! SPECIAL CONDITONS      NONE
!
! I/O                    NONE
!
! PRECISION              SINGLE
!
! REQUIRED FILES         comf.f,gnbnaux.f,fish.f
! FILES
!
! LANGUAGE               FORTRAN 90
!
! HISTORY                WRITTEN IN 1979 BY ROLAND SWEET OF NCAR'S
!                        SCIENTIFIC COMPUTING DIVISION.  MADE AVAILABLE
!                        ON NCAR'S PUBLIC LIBRARIES IN JANUARY, 1980.
!                        Revised in June 2004 by John Adams using
!                        Fortran 90 dynamically allocated work space.
!
! ALGORITHM              THE LINEAR SYSTEM IS SOLVED BY A CYCLIC
!                        REDUCTION ALGORITHM DESCRIBED IN THE
!                        REFERENCE.
!
! PORTABILITY            FORTRAN 90 --
!                        THE MACHINE DEPENDENT CONSTANT PI IS
!                        DEFINED IN FUNCTION PIMACH.
!
! REFERENCES             SWEET, R., "A CYCLIC REDUCTION ALGORITHM FOR
!                        SOLVING BLOCK TRIDIAGONAL SYSTEMS OF ARBITRARY
!                        DIMENSIONS," SIAM J. ON NUMER. ANAL., 14 (1977)
!                        PP. 706-720.
!
! ACCURACY               THIS TEST WAS PERFORMED ON a platform with
!                        64 bit floating point arithmetic.
!                        A UNIFORM RANDOM NUMBER GENERATOR WAS USED
!                        TO CREATE A SOLUTION ARRAY X FOR THE SYSTEM
!                        GIVEN IN THE 'PURPOSE' DESCRIPTION ABOVE
!                        WITH
!                          A(I) = C(I) = -0.5*B(I) = 1, I=1,2,...,M
!
!                        AND, WHEN MPEROD = 1
!
!                          A(1) = C(M) = 0
!                          A(M) = C(1) = 2.
!
!                        THE SOLUTION X WAS SUBSTITUTED INTO THE
!                        GIVEN SYSTEM  AND, USING DOUBLE PRECISION
!                        A RIGHT SIDE Y WAS COMPUTED.
!                        USING THIS ARRAY Y, SUBROUTINE GENBUN
!                        WAS CALLED TO PRODUCE APPROXIMATE
!                        SOLUTION Z.  THEN RELATIVE ERROR
!                          E = MAX(ABS(Z(I,J)-X(I,J)))/
!                              MAX(ABS(X(I,J)))
!                        WAS COMPUTED, WHERE THE TWO MAXIMA ARE TAKEN
!                        OVER I=1,2,...,M AND J=1,...,N.
!
!                        THE VALUE OF E IS GIVEN IN THE TABLE
!                        BELOW FOR SOME TYPICAL VALUES OF M AND N.
!
!                   M (=N)    MPEROD    NPEROD        E
!                   ------    ------    ------      ------
!
!                     31        0         0         6.E-14
!                     31        1         1         4.E-13
!                     31        1         3         3.E-13
!                     32        0         0         9.E-14
!                     32        1         1         3.E-13
!                     32        1         3         1.E-13
!                     33        0         0         9.E-14
!                     33        1         1         4.E-13
!                     33        1         3         1.E-13
!                     63        0         0         1.E-13
!                     63        1         1         1.E-12
!                     63        1         3         2.E-13
!                     64        0         0         1.E-13
!                     64        1         1         1.E-12
!                     64        1         3         6.E-13
!                     65        0         0         2.E-13
!                     65        1         1         1.E-12
!                     65        1         3         4.E-13
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
      SUBROUTINE GENBUN(NPEROD, N, MPEROD, M, A, B, C, IDIMY, Y, IERROR)
      USE fish
      implicit none
      
      DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
                                     ONE  = 1.0D0, TWO  = 2.0D0, &
                                     FOUR = 4.0D0

      TYPE(fishworkspace) :: w
!-----------------------------------------------
!   D u m m y   A r g u m e n t s
!-----------------------------------------------
      INTEGER, INTENT(IN)  :: NPEROD, N, MPEROD, M, IDIMY
      INTEGER, INTENT(OUT) :: IERROR
      DOUBLE PRECISION, DIMENSION(:)  :: A, B, C
      DOUBLE PRECISION, INTENT(INOUT) :: Y(IDIMY,*)
!-----------------------------------------------
!   L o c a l   V a r i a b l e s
!-----------------------------------------------
      INTEGER :: IRWK, ICWK
!-----------------------------------------------

      write(*,*) 'fish90: genbun'
      IERROR = 0
!     check input arguments
      IF (M <= 2) then
         ierror = 1
         return
      end if
      IF (N <= 2) then
         ierror = 2
         return
      end if
      IF (IDIMY < M) then
         ierror = 3
         return
      end if
      IF (NPEROD<0 .OR. NPEROD>4) then
         ierror = 4
         return
      end if
      IF (MPEROD<0 .OR. MPEROD>1) then
         ierror = 5
         return
      end if
!     compute and allocate real work space for genbun
      CALL GEN_SPACE (N, M, IRWK)
      ICWK = 0
      CALL ALLOCATFISH (IRWK, ICWK, W, IERROR)
!     return if allocation failed (e.g., if n,m are too large)
      IF (IERROR == 20)  THEN
         write(*,*) 'error call ALLOCATFISH'
         RETURN 
      END IF
      call genbunn(NPEROD,N,MPEROD,M,A,B,C,IDIMY,Y,IERROR,w%rew,IRWK)
!     release allocated work space
      CALL FISHFIN (W,IERROR)
      IF (IERROR == 20)  THEN
         write(*,*) 'error call FISHFIN'
         RETURN 
      END IF
!
      END SUBROUTINE GENBUN

 
      SUBROUTINE GENBUNN(NPEROD,N,MPEROD,M,vecA,vecB,vecC,IDIMY,matY, &
                         IERROR,vecW,IW)
      implicit none
      
      DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
                                     ONE  = 1.0D0, TWO  = 2.0D0, &
                                     FOUR = 4.0D0

!-----------------------------------------------
!   D u m m y   A r g u m e n t s
!-----------------------------------------------
      INTEGER, INTENT(IN)    :: NPEROD, N, MPEROD, M, IDIMY,IW
      INTEGER, INTENT(INOUT) :: IERROR
      DOUBLE PRECISION, DIMENSION(M), INTENT(IN)   :: vecA, vecB, vecC
      DOUBLE PRECISION, DIMENSION(IW), INTENT(OUT) :: vecW
      DOUBLE PRECISION, DIMENSION(IDIMY,N),INTENT(INOUT) :: matY
!-----------------------------------------------
!   L o c a l   V a r i a b l e s
!-----------------------------------------------
      INTEGER :: I, MP1, IWBA, IWBB, IWBC, IWB2, IWB3, IWW1, IWW2, IWW3, &
                 IWD, IWTCOS, IWP, IW2,  K, J, MP, NP, &
                 IPSTOR, IREV, MH, MHM1, MODD, NBY2, MSKIP
      DOUBLE PRECISION :: A1
!-----------------------------------------------
      IF (MPEROD /= 1) THEN
         DO I = 2, M
            IF (vecA(I) /= vecC(1)) GO TO 103
            IF (vecC(I) /= vecC(1)) GO TO 103
            IF (vecB(I) /= vecB(1)) GO TO 103
         END DO
         GO TO 104
      ENDIF
      IF (vecA(1)/=ZERO .OR. vecC(M)/=ZERO) IERROR = 7
      GO TO 104
  103 CONTINUE
      IERROR = 6
  104 CONTINUE
      IF (IERROR /= 0) RETURN 
      MP1 = M + 1
      IWBA = MP1
      IWBB = IWBA + M
      IWBC = IWBB + M
      IWB2 = IWBC + M
      IWB3 = IWB2 + M
      IWW1 = IWB3 + M
      IWW2 = IWW1 + M
      IWW3 = IWW2 + M
      IWD = IWW3 + M
      IWTCOS = IWD + M
      IWP = IWTCOS + 4*N
      vecW(IWBA:M-1+IWBA) = -vecA(:M)
      vecW(IWBC:M-1+IWBC) = -vecC(:M)
      vecW(IWBB:M-1+IWBB) = TWO - vecB(:M)
      matY(:M,:N) = -matY(:M,:N)
      MP = MPEROD + 1
      NP = NPEROD + 1
      GO TO (114,107) MP
  107 CONTINUE
      GO TO (108,109,110,111,123) NP
  108 CONTINUE
      IW2 = IW - IWP + 1
      CALL POISP2 (M, N, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
                   vecW(IWBC:IWBC+M-1), matY, IDIMY, &
                   vecW(1:M), vecW(IWB2:IWB2+M-1), vecW(IWB3:IWB3+M-1), &
                   vecW(IWW1:IWW1+M-1), vecW(IWW2:IWW2+M-1), &
                   vecW(IWW3:IWW3+M-1), vecW(IWD:IWD+M-1), &
                   vecW(IWTCOS:IWTCOS+4*N-1), vecW(IWP:),IW2)
      GO TO 112
  109 CONTINUE
      IW2 = IW - IWP + 1
      CALL POISD2 (M, N, 1, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1),  &
                   vecW(IWBC::IWBC+M-1), matY, IDIMY, &
                   vecW(1:M), vecW(IWW1:IWW1+M-1), vecW(IWD:IWD+M-1), &
                   vecW(IWTCOS:IWTCOS+4*N-1), vecW(IWP:), IW2)
      GO TO 112
  110 CONTINUE
      IW2 = IW - IWP + 1
      CALL POISN2 (M, N, 1, 2, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
                   vecW(IWBC:IWBC+M-1), matY, IDIMY, vecW(1:M),  &
                   vecW(IWB2:IWB2+M-1), vecW(IWB3:IWB3+M-1), &
                   vecW(IWW1:IWW1+M-1), vecW(IWW2:IWW2+M-1), &
                   vecW(IWW3::IWW3+M-1), vecW(IWD:IWD+M-1), &
                   vecW(IWTCOS:IWTCOS+4*N-1),vecW(IWP:),IW2)
      GO TO 112
  111 CONTINUE
      IW2 = IW - IWP + 1
      CALL POISN2 (M, N, 1, 1, vecW(IWBA:IWBA+M-1), vecW(IWBB:IWBB+M-1), &
                   vecW(IWBC::IWBC+M-1), matY, IDIMY, vecW(1:M), &
                   vecW(IWB2:IWW1+M-1), vecW(IWB3:IWB3+M-1), &
                   vecW(IWW1:IWW1+M-1), vecW(IWW2:IWW2+M-1), &
                   vecW(IWW3::IWW3+M-1), vecW(IWD:IWD+M-1), &
                   vecW(IWTCOS:IWTCOS+4*N-1),vecW(IWP:),IW2)
  112 CONTINUE
      IPSTOR = vecW(IWW1)
      IREV = 2
      IF (NPEROD == 4) GO TO 124
  113 CONTINUE
      GO TO (127,133) MP
  114 CONTINUE
      MH = (M + 1)/2
      MHM1 = MH - 1
      MODD = 1
      IF (MH*2 == M) MODD = 2
      DO J = 1, N
         vecW(:MHM1) = matY(MH-1:MH-MHM1:(-1),J) - matY(MH+1:MHM1+MH,J)
         vecW(MH+1:MHM1+MH) = matY(MH-1:MH-MHM1:(-1),J) + matY(MH+1:MHM1+MH,J)
         vecW(MH) = TWO*matY(MH,J)
         GO TO (117,116) MODD
  116    CONTINUE
         vecW(M) = TWO*matY(M,J)
  117    CONTINUE
         matY(:M,J) = vecW(:M)
      END DO
      K = IWBC + MHM1 - 1
      I = IWBA + MHM1
      vecW(K) = ZERO
      vecW(I) = ZERO
      vecW(K+1) = TWO*vecW(K+1)
      SELECT CASE (MODD) 
      CASE DEFAULT
         K = IWBB + MHM1 - 1
         vecW(K) = vecW(K) - vecW(I-1)
         vecW(IWBC-1) = vecW(IWBC-1) + vecW(IWBB-1)
      CASE (2) 
         vecW(IWBB-1) = vecW(K+1)
      END SELECT
      GO TO 107
!
!     REVERSE COLUMNS WHEN NPEROD = 4.
!
  123 CONTINUE
      IREV = 1
      NBY2 = N/2
  124 CONTINUE
      DO J = 1, NBY2
         MSKIP = N + 1 - J
         DO I = 1, M
            A1 = matY(I,J)
            matY(I,J) = matY(I,MSKIP)
            matY(I,MSKIP) = A1
         END DO
      END DO
      GO TO (110,113) IREV
  127 CONTINUE
      DO J = 1, N
         vecW(MH-1:MH-MHM1:(-1)) = HALF*(matY(MH+1:MHM1+MH,J)+matY(:MHM1,J))
         vecW(MH+1:MHM1+MH) = HALF*(matY(MH+1:MHM1+MH,J)-matY(:MHM1,J))
         vecW(MH) = HALF*matY(MH,J)
         GO TO (130,129) MODD
  129    CONTINUE
         vecW(M) = HALF*matY(M,J)
  130    CONTINUE
         matY(:M,J) = vecW(:M)
      END DO
  133 CONTINUE
      vecW(1) = IPSTOR + IWP - 1
      RETURN 
      END SUBROUTINE GENBUNN


      SUBROUTINE POISD2(MR,NR,ISTAG,vecBA,vecBB,vecBC,matY,IDIMY, &
                        vecB,vecW,vecD,TCOS,vecP,IDIMP)
      implicit none
      
      DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
                                     ONE  = 1.0D0, TWO  = 2.0D0, &
                                     FOUR = 4.0D0

!-----------------------------------------------
!   D u m m y   A r g u m e n t s
!-----------------------------------------------
      INTEGER, INTENT(IN) :: MR, NR, ISTAG, IDIMY,IDIMP
      DOUBLE PRECISION, DIMENSION(MR), INTENT(IN)         :: vecBA, vecBB, &
                                                             vecBC
      DOUBLE PRECISION, DIMENSION(IDIMY,NR),INTENT(INOUT) :: matY
      DOUBLE PRECISION, DIMENSION(MR), INTENT(INOUT)      :: vecB, vecD, vecW
      DOUBLE PRECISION, DIMENSION(4*NR), INTENT(INOUT)    :: TCOS
      DOUBLE PRECISION, DIMENSION(IDIMP), INTENT(INOUT)   :: vecP
!-----------------------------------------------
!   L o c a l   V a r i a b l e s
!-----------------------------------------------
      INTEGER :: M, N, JSH, IP, IPSTOR, KR, IRREG, JSTSAV, I, LR, NUN, &
                 JST, JSP, L, NODD, J, JM1, JP1, JM2, JP2, JM3, JP3, &
                 NODDPR, KRPI, IDEG, JDEG
      DOUBLE PRECISION :: FI, T
!-----------------------------------------------
!
!     SUBROUTINE TO SOLVE POISSON'S EQUATION FOR DIRICHLET BOUNDARY
!     CONDITIONS.
!
!     ISTAG = 1 IF THE LAST DIAGONAL BLOCK IS THE MATRIX A.
!     ISTAG = 2 IF THE LAST DIAGONAL BLOCK IS THE MATRIX A+I.
!
      M = MR
      N = NR
      JSH = 0
      FI = ONE/FLOAT(ISTAG)
      IP = -M
      IPSTOR = 0
      SELECT CASE (ISTAG) 
      CASE DEFAULT
         KR = 0
         IRREG = 1
         IF (N > 1) GO TO 106
         TCOS(1) = ZERO
      CASE (2) 
         KR = 1
         JSTSAV = 1
         IRREG = 2
         IF (N > 1) GO TO 106
         TCOS(1) = -ONE
      END SELECT
      vecB(:M) = matY(:M,1)
      CALL TRIX (1, 0, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
      matY(:M,1) = vecB(:M)
      GO TO 183
  106 CONTINUE
      LR = 0
      vecP(:M) = ZERO
      NUN = N
      JST = 1
      JSP = N
!
!     IRREG = 1 WHEN NO IRREGULARITIES HAVE OCCURRED, OTHERWISE IT IS 2.
!
  108 CONTINUE
      L = 2*JST
      NODD = 2 - 2*((NUN + 1)/2) + NUN
!
!     NODD = 1 WHEN NUN IS ODD, OTHERWISE IT IS 2.
!
      SELECT CASE (NODD) 
      CASE DEFAULT
         JSP = JSP - L
      CASE (1) 
         JSP = JSP - JST
         IF (IRREG /= 1) JSP = JSP - L
      END SELECT
      CALL COSGEN (JST, 1, HALF, ZERO, TCOS, 4*NR)
      IF (L <= JSP) THEN
         DO J = L, JSP, L
            JM1 = J - JSH
            JP1 = J + JSH
            JM2 = J - JST
            JP2 = J + JST
            JM3 = JM2 - JSH
            JP3 = JP2 + JSH
            IF (JST == 1) THEN
               vecB(:M) = TWO*matY(:M,J)
               matY(:M,J) = matY(:M,JM2) + matY(:M,JP2)
            ELSE
               DO I = 1, M
                  T = matY(I,J) - matY(I,JM1) - matY(I,JP1) + matY(I,JM2) + &
                      matY(I,JP2)
                  vecB(I) = T + matY(I,J) - matY(I,JM3) - matY(I,JP3)
                  matY(I,J) = T
               END DO
            ENDIF
            CALL TRIX (JST, 0, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
            matY(:M,J) = matY(:M,J) + vecB(:M)
         END DO
      ENDIF
!
!     REDUCTION FOR LAST UNKNOWN
!
      SELECT CASE (NODD) 
      CASE DEFAULT
         GO TO (152,120) IRREG
!
!     ODD NUMBER OF UNKNOWNS
!
  120    CONTINUE
         JSP = JSP + L
         J = JSP
         JM1 = J - JSH
         JP1 = J + JSH
         JM2 = J - JST
         JP2 = J + JST
         JM3 = JM2 - JSH
         GO TO (123,121) ISTAG
  121    CONTINUE
         IF (JST /= 1) GO TO 123
         vecB(:M) = matY(:M,J)
         matY(:M,J) = ZERO
         GO TO 130
  123    CONTINUE
         SELECT CASE (NODDPR) 
         CASE DEFAULT
            vecB(:M) = HALF*(matY(:M,JM2)-matY(:M,JM1)-matY(:M,JM3)) + &
                       vecP(IP+1:M+IP)+ matY(:M,J)
         CASE (2) 
            vecB(:M) = HALF*(matY(:M,JM2)-matY(:M,JM1)-matY(:M,JM3)) +  &
                       matY(:M,JP2) - matY(:M,JP1) + matY(:M,J)
         END SELECT
         matY(:M,J) = HALF*(matY(:M,J)-matY(:M,JM1)-matY(:M,JP1))
  130    CONTINUE
         CALL TRIX (JST, 0, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
         IP = IP + M
         IPSTOR = MAX0(IPSTOR,IP + M)
         vecP(IP+1:M+IP) = matY(:M,J) + vecB(:M)
         vecB(:M) = matY(:M,JP2) + vecP(IP+1:M+IP)
         IF (LR == 0) THEN
            DO I = 1, JST
               KRPI = KR + I
               TCOS(KRPI) = TCOS(I)
            END DO
         ELSE
            CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(JST+1), 4*NR-JST)
            CALL MERGE (TCOS, 0, JST, JST, LR, KR, 4*NR)
         ENDIF
         CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
         CALL TRIX (KR, KR, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
         matY(:M,J) = matY(:M,JM2) + vecB(:M) + vecP(IP+1:M+IP)
         LR = KR
         KR = KR + L
!
!     EVEN NUMBER OF UNKNOWNS
!
      CASE (2) 
         JSP = JSP + L
         J = JSP
         JM1 = J - JSH
         JP1 = J + JSH
         JM2 = J - JST
         JP2 = J + JST
         JM3 = JM2 - JSH
         SELECT CASE (IRREG) 
         CASE DEFAULT
            JSTSAV = JST
            IDEG = JST
            KR = L
         CASE (2) 
            CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
            CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(KR+1), 4*NR-KR)
            IDEG = KR
            KR = KR + JST
         END SELECT
         IF (JST == 1) THEN
            IRREG = 2
            vecB(:M) = matY(:M,J)
            matY(:M,J) = matY(:M,JM2)
         ELSE
            vecB(:M) = matY(:M,J) + HALF*(matY(:M,JM2)-matY(:M,JM1)- &
                       matY(:M,JM3))
            SELECT CASE (IRREG) 
            CASE DEFAULT
               matY(:M,J) = matY(:M,JM2) + HALF*(matY(:M,J)- &
                            matY(:M,JM1)-matY(:M,JP1))
               IRREG = 2
            CASE (2) 
               SELECT CASE (NODDPR) 
               CASE DEFAULT
                  matY(:M,J) = matY(:M,JM2) + vecP(IP+1:M+IP)
                  IP = IP - M
               CASE (2) 
                  matY(:M,J) = matY(:M,JM2) + matY(:M,J) - matY(:M,JM1)
               END SELECT
            END SELECT
         ENDIF
         CALL TRIX (IDEG, LR, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
         matY(:M,J) = matY(:M,J) + vecB(:M)
      END SELECT
  152 CONTINUE
      NUN = NUN/2
      NODDPR = NODD
      JSH = JST
      JST = 2*JST
      IF (NUN >= 2) GO TO 108
!
!     START SOLUTION.
!
      J = JSP
      vecB(:M) = matY(:M,J)
      SELECT CASE (IRREG) 
      CASE DEFAULT
         CALL COSGEN (JST, 1, HALF, ZERO, TCOS, 4*NR)
         IDEG = JST
      CASE (2) 
         KR = LR + JST
         CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
         CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(KR+1), 4*NR-KR)
         IDEG = KR
      END SELECT
      CALL TRIX (IDEG, LR, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
      JM1 = J - JSH
      JP1 = J + JSH
      SELECT CASE (IRREG) 
      CASE DEFAULT
         matY(:M,J) = HALF*(matY(:M,J)-matY(:M,JM1)-matY(:M,JP1)) + vecB(:M)
      CASE (2) 
         SELECT CASE (NODDPR) 
         CASE DEFAULT
            matY(:M,J) = vecP(IP+1:M+IP) + vecB(:M)
            IP = IP - M
         CASE (2) 
            matY(:M,J) = matY(:M,J) - matY(:M,JM1) + vecB(:M)
         END SELECT
      END SELECT
  164 CONTINUE
      JST = JST/2
      JSH = JST/2
      NUN = 2*NUN
      IF (NUN > N) GO TO 183
      DO J = JST, N, L
         JM1 = J - JSH
         JP1 = J + JSH
         JM2 = J - JST
         JP2 = J + JST
         IF (J <= JST) THEN
            vecB(:M) = matY(:M,J) + matY(:M,JP2)
         ELSE
            IF (JP2 <= N) GO TO 168
            vecB(:M) = matY(:M,J) + matY(:M,JM2)
            IF (JST < JSTSAV) IRREG = 1
            GO TO (170,171) IRREG
  168       CONTINUE
            vecB(:M) = matY(:M,J) + matY(:M,JM2) + matY(:M,JP2)
         ENDIF
  170    CONTINUE
         CALL COSGEN (JST, 1, HALF, ZERO, TCOS, 4*NR)
         IDEG = JST
         JDEG = 0
         GO TO 172
  171    CONTINUE
         IF (J + L > N) LR = LR - JST
         KR = JST + LR
         CALL COSGEN (KR, JSTSAV, ZERO, FI, TCOS, 4*NR)
         CALL COSGEN (LR, JSTSAV, ZERO, FI, TCOS(KR+1), 4*NR-KR)
         IDEG = KR
         JDEG = LR
  172    CONTINUE
         CALL TRIX (IDEG, JDEG, M, vecBA, vecBB, vecBC, vecB, TCOS, 4*NR, vecD, vecW)
         IF (JST <= 1) THEN
            matY(:M,J) = vecB(:M)
         ELSE
            IF (JP2 > N) GO TO 177
  175       CONTINUE
            matY(:M,J) = HALF*(matY(:M,J)-matY(:M,JM1)-matY(:M,JP1)) + vecB(:M)
            CYCLE 
  177       CONTINUE
            GO TO (175,178) IRREG
  178       CONTINUE
            IF (J + JSH <= N) THEN
               matY(:M,J) = vecB(:M) + vecP(IP+1:M+IP)
               IP = IP - M
            ELSE
               matY(:M,J) = vecB(:M) + matY(:M,J) - matY(:M,JM1)
            ENDIF
         ENDIF
      END DO
      L = L/2
      GO TO 164
  183 CONTINUE
      vecW(1) = IPSTOR
      RETURN 
      END SUBROUTINE POISD2


      SUBROUTINE POISN2(M, N, ISTAG, MIXBND, vecA, vecBB, vecC, &
                        matQ, IDIMQ, vecB, vecB2,vecB3, &
                        vecW, vecW2, vecW3, vecD, TCOS, vecP, IDIMP)
      implicit none
      
      DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
                                     ONE  = 1.0D0, TWO  = 2.0D0, &
                                     FOUR = 4.0D0

!-----------------------------------------------
!   D u m m y   A r g u m e n t s
!-----------------------------------------------
      INTEGER, INTENT(IN) :: M, N, ISTAG, MIXBND, IDIMQ,IDIMP
      DOUBLE PRECISION, DIMENSION(M), INTENT(IN)   :: vecA, vecBB, vecC
      DOUBLE PRECISION, DIMENSION(IDIMQ,N), INTENT(INOUT) :: matQ
      DOUBLE PRECISION, DIMENSION(M),INTENT(INOUT) :: vecB, vecB2, vecB3,  &
                                                      vecD, vecW, vecW2, vecW3
      DOUBLE PRECISION, DIMENSION(IDIMP),INTENT(INOUT) :: vecP
      DOUBLE PRECISION, DIMENSION(4*N),INTENT(INOUT)   :: TCOS
!-----------------------------------------------
!   L o c a l   V a r i a b l e s
!-----------------------------------------------
      INTEGER, DIMENSION(4) :: K
      INTEGER :: K1, K2, K3, K4, MR, IP, IPSTOR, I2R, JR, NR, NLAST, &
                 KR, LR, I, NROD, JSTART, JSTOP, I2RBY2, &
                 J, JP1, JP2, JP3, JM1,JM2, JM3, NRODPR, II, I1, I2, &
                 JR2, NLASTP, JSTEP
      DOUBLE PRECISION :: FISTAG, FNUM, FDEN, FI, T
!-----------------------------------------------
!
!     SUBROUTINE TO SOLVE POISSON'S EQUATION WITH NEUMANN BOUNDARY
!     CONDITIONS.
!
!     ISTAG = 1 IF THE LAST DIAGONAL BLOCK IS A.
!     ISTAG = 2 IF THE LAST DIAGONAL BLOCK IS A-I.
!     MIXBND = 1 IF HAVE NEUMANN BOUNDARY CONDITIONS AT BOTH BOUNDARIES.
!     MIXBND = 2 IF HAVE NEUMANN BOUNDARY CONDITIONS AT BOTTOM AND
!     DIRICHLET CONDITION AT TOP.  (FOR THIS CASE, MUST HAVE ISTAG = 1.)
!
      EQUIVALENCE (K(1), K1), (K(2), K2), (K(3), K3), (K(4), K4)
      FISTAG = 3 - ISTAG
      FNUM = ONE/FLOAT(ISTAG)
      FDEN = HALF*FLOAT(ISTAG - 1)
      MR = M
      IP = -MR
      IPSTOR = 0
      I2R = 1
      JR = 2
      NR = N
      NLAST = N
      KR = 1
      LR = 0
      GO TO (101,103) ISTAG
  101 CONTINUE
      matQ(:MR,N) = HALF*matQ(:MR,N)
      GO TO (103,104) MIXBND
  103 CONTINUE
      IF (N <= 3) GO TO 155
  104 CONTINUE
      JR = 2*I2R
      NROD = 1
      IF ((NR/2)*2 == NR) NROD = 0
      SELECT CASE (MIXBND) 
      CASE DEFAULT
         JSTART = 1
      CASE (2) 
         JSTART = JR
         NROD = 1 - NROD
      END SELECT
      JSTOP = NLAST - JR
      IF (NROD == 0) JSTOP = JSTOP - I2R
      CALL COSGEN (I2R, 1, HALF, ZERO, TCOS, 4*NR)
      I2RBY2 = I2R/2
      IF (JSTOP < JSTART) THEN
         J = JR
      ELSE
         DO J = JSTART, JSTOP, JR
            JP1 = J + I2RBY2
            JP2 = J + I2R
            JP3 = JP2 + I2RBY2
            JM1 = J - I2RBY2
            JM2 = J - I2R
            JM3 = JM2 - I2RBY2
            IF (J == 1) THEN
               JM1 = JP1
               JM2 = JP2
               JM3 = JP3
            ENDIF
            IF (I2R == 1) THEN
               IF (J == 1) JM2 = JP2
               vecB(:MR) = TWO*matQ(:MR,J)
               matQ(:MR,J) = matQ(:MR,JM2) + matQ(:MR,JP2)
            ELSE
               DO I = 1, MR
                  FI = matQ(I,J)
                  matQ(I,J)=matQ(I,J)-matQ(I,JM1)-matQ(I,JP1)+ &
                            matQ(I,JM2)+matQ(I,JP2)
                  vecB(I) = FI + matQ(I,J) - matQ(I,JM3) - matQ(I,JP3)
               END DO
            ENDIF
            CALL TRIX (I2R, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
            matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
!
!     END OF REDUCTION FOR REGULAR UNKNOWNS.
!
         END DO
!
!     BEGIN SPECIAL REDUCTION FOR LAST UNKNOWN.
!
         J = JSTOP + JR
      ENDIF
      NLAST = J
      JM1 = J - I2RBY2
      JM2 = J - I2R
      JM3 = JM2 - I2RBY2
      IF (NROD /= 0) THEN
!
!     ODD NUMBER OF UNKNOWNS
!
         IF (I2R == 1) THEN
            vecB(:MR) = FISTAG*matQ(:MR,J)
            matQ(:MR,J) = matQ(:MR,JM2)
         ELSE
            vecB(:MR) = matQ(:MR,J) + HALF*(matQ(:MR,JM2)- &
                        matQ(:MR,JM1)-matQ(:MR,JM3))
            IF (NRODPR == 0) THEN
               matQ(:MR,J) = matQ(:MR,JM2) + vecP(IP+1:MR+IP)
               IP = IP - MR
            ELSE
               matQ(:MR,J) = matQ(:MR,J) - matQ(:MR,JM1) + matQ(:MR,JM2)
            ENDIF
            IF (LR /= 0) THEN
               CALL COSGEN (LR, 1, HALF, FDEN, TCOS(KR+1), 4*NR-KR)
            ELSE
               vecB(:MR) = FISTAG*vecB(:MR)
            ENDIF
         ENDIF
         CALL COSGEN (KR, 1, HALF, FDEN, TCOS, 4*NR)
         CALL TRIX (KR, LR, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
         KR = KR + I2R
      ELSE
         JP1 = J + I2RBY2
         JP2 = J + I2R
         IF (I2R == 1) THEN
            vecB(:MR) = matQ(:MR,J)
            CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
            IP = 0
            IPSTOR = MR
            SELECT CASE (ISTAG) 
            CASE DEFAULT
               vecP(:MR) = vecB(:MR)
               vecB(:MR) = vecB(:MR) + matQ(:MR,N)
               TCOS(1) = ONE
               TCOS(2) = ZERO
               CALL TRIX (1, 1, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
               matQ(:MR,J) = matQ(:MR,JM2) + vecP(:MR) + vecB(:MR)
               GO TO 150
            CASE (1) 
               vecP(:MR) = vecB(:MR)
               matQ(:MR,J) = matQ(:MR,JM2) + TWO*matQ(:MR,JP2) + 3.*vecB(:MR)
               GO TO 150
            END SELECT
         ENDIF
         vecB(:MR) = matQ(:MR,J) + HALF*(matQ(:MR,JM2)- &
                     matQ(:MR,JM1)-matQ(:MR,JM3))
         IF (NRODPR == 0) THEN
            vecB(:MR) = vecB(:MR) + vecP(IP+1:MR+IP)
         ELSE
            vecB(:MR) = vecB(:MR) + matQ(:MR,JP2) - matQ(:MR,JP1)
         ENDIF
         CALL TRIX (I2R, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         IP = IP + MR
         IPSTOR = MAX0(IPSTOR,IP + MR)
         vecP(IP+1:MR+IP) = vecB(:MR) + HALF*(matQ(:MR,J)- &
                            matQ(:MR,JM1)-matQ(:MR,JP1))
         vecB(:MR) = vecP(IP+1:MR+IP) + matQ(:MR,JP2)
         IF (LR /= 0) THEN
            CALL COSGEN (LR, 1, HALF, FDEN, TCOS(I2R+1), 4*NR-I2R)
            CALL MERGE (TCOS, 0, I2R, I2R, LR, KR, 4*NR)
         ELSE
            DO I = 1, I2R
               II = KR + I
               TCOS(II) = TCOS(I)
            END DO
         ENDIF
         CALL COSGEN (KR, 1, HALF, FDEN, TCOS, 4*NR)
         IF (LR == 0) THEN
            GO TO (146,145) ISTAG
         ENDIF
  145    CONTINUE
         CALL TRIX (KR, KR, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         GO TO 148
  146    CONTINUE
         vecB(:MR) = FISTAG*vecB(:MR)
  148    CONTINUE
         matQ(:MR,J) = matQ(:MR,JM2) + vecP(IP+1:MR+IP) + vecB(:MR)
  150    CONTINUE
         LR = KR
         KR = KR + JR
      ENDIF
      SELECT CASE (MIXBND) 
      CASE DEFAULT
         NR = (NLAST - 1)/JR + 1
         IF (NR <= 3) GO TO 155
      CASE (2) 
         NR = NLAST/JR
         IF (NR <= 1) GO TO 192
      END SELECT
      I2R = JR
      NRODPR = NROD
      GO TO 104
  155 CONTINUE
      J = 1 + JR
      JM1 = J - I2R
      JP1 = J + I2R
      JM2 = NLAST - I2R
      IF (NR /= 2) THEN
         IF (LR /= 0) GO TO 170
         IF (N == 3) THEN
!
!     CASE N = 3.
!
            GO TO (156,168) ISTAG
  156       CONTINUE
            vecB(:MR) = matQ(:MR,2)
            TCOS(1) = ZERO
            CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
            matQ(:MR,2) = vecB(:MR)
            vecB(:MR) = 4.*vecB(:MR) + matQ(:MR,1) + TWO*matQ(:MR,3)
            TCOS(1) = -TWO
            TCOS(2) = TWO
            I1 = 2
            I2 = 0
            CALL TRIX (I1, I2, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
            matQ(:MR,2) = matQ(:MR,2) + vecB(:MR)
            vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,2)
            TCOS(1) = ZERO
            CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
            matQ(:MR,1) = vecB(:MR)
            JR = 1
            I2R = 0
            GO TO 194
         ENDIF
!
!     CASE N = 2**P+1
!
         GO TO (162,170) ISTAG
  162    CONTINUE
         vecB(:MR) = matQ(:MR,J) + HALF*matQ(:MR,1) - &
                     matQ(:MR,JM1) + matQ(:MR,NLAST) - matQ(:MR,JM2)
         CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
         CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,J) = HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1)) + vecB(:MR)
         vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,NLAST) + 4.*matQ(:MR,J)
         JR2 = 2*JR
         CALL COSGEN (JR, 1, ZERO, ZERO, TCOS, 4*NR)
         TCOS(JR+1:JR*2) = -TCOS(JR:1:(-1))
         CALL TRIX (JR2, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
         vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,J)
         CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
         CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,1) = HALF*matQ(:MR,1) - matQ(:MR,JM1) + vecB(:MR)
         GO TO 194
!
!     CASE OF GENERAL N WITH NR = 3 .
!
  168    CONTINUE
         vecB(:MR) = matQ(:MR,2)
         matQ(:MR,2) = ZERO
         vecB2(:MR) = matQ(:MR,3)
         vecB3(:MR) = matQ(:MR,1)
         JR = 1
         I2R = 0
         J = 2
         GO TO 177
  170    CONTINUE
         vecB(:MR) = HALF*matQ(:MR,1) - matQ(:MR,JM1) + matQ(:MR,J)
         IF (NROD == 0) THEN
            vecB(:MR) = vecB(:MR) + vecP(IP+1:MR+IP)
         ELSE
            vecB(:MR) = vecB(:MR) + matQ(:MR,NLAST) - matQ(:MR,JM2)
         ENDIF
         DO I = 1, MR
            T = HALF*(matQ(I,J)-matQ(I,JM1)-matQ(I,JP1))
            matQ(I,J) = T
            vecB2(I) = matQ(I,NLAST) + T
            vecB3(I) = matQ(I,1) + TWO*T
         END DO
  177    CONTINUE
         K1 = KR + 2*JR - 1
         K2 = KR + JR
         TCOS(K1+1) = -TWO
         K4 = K1 + 3 - ISTAG
         CALL COSGEN (K2 + ISTAG - 2, 1, ZERO, FNUM, TCOS(K4), 4*NR-K4+1)
         K4 = K1 + K2 + 1
         CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K4), 4*NR-K4+1)
         CALL MERGE (TCOS, K1, K2, K1 + K2, JR - 1, 0, 4*NR)
         K3 = K1 + K2 + LR
         CALL COSGEN (JR, 1, HALF, ZERO, TCOS(K3+1), 4*NR-K3)
         K4 = K3 + JR + 1
         CALL COSGEN (KR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
         CALL MERGE (TCOS, K3, JR, K3 + JR, KR, K1, 4*NR)
         IF (LR /= 0) THEN
            CALL COSGEN (LR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
            CALL MERGE (TCOS, K3, JR, K3 + JR, LR, K3 - LR, 4*NR)
            CALL COSGEN (KR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
         ENDIF
         K3 = KR
         K4 = KR
         CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, &
                    TCOS, 4*NR, vecD, vecW, vecW2, vecW3)
         vecB(:MR) = vecB(:MR) + vecB2(:MR) + vecB3(:MR)
         TCOS(1) = TWO
         CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
         vecB(:MR) = matQ(:MR,1) + TWO*matQ(:MR,J)
         CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
         CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         IF (JR == 1) THEN
            matQ(:MR,1) = vecB(:MR)
            GO TO 194
         ENDIF
         matQ(:MR,1) = HALF*matQ(:MR,1) - matQ(:MR,JM1) + vecB(:MR)
         GO TO 194
      ENDIF
      IF (N == 2) THEN
!
!     CASE  N = 2
!
         vecB(:MR) = matQ(:MR,1)
         TCOS(1) = ZERO
         CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,1) = vecB(:MR)
         vecB(:MR) = TWO*(matQ(:MR,2)+vecB(:MR))*FISTAG
         TCOS(1) = -FISTAG
         TCOS(2) = TWO
         CALL TRIX (2, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,1) = matQ(:MR,1) + vecB(:MR)
         JR = 1
         I2R = 0
         GO TO 194
      ENDIF
      vecB3(:MR) = ZERO
      vecB(:MR) = matQ(:MR,1) + TWO*vecP(IP+1:MR+IP)
      matQ(:MR,1) = HALF*matQ(:MR,1) - matQ(:MR,JM1)
      vecB2(:MR) = TWO*(matQ(:MR,1)+matQ(:MR,NLAST))
      K1 = KR + JR - 1
      TCOS(K1+1) = -TWO
      K4 = K1 + 3 - ISTAG
      CALL COSGEN (KR + ISTAG - 2, 1, ZERO, FNUM, TCOS(K4), 4*NR-K4+1)
      K4 = K1 + KR + 1
      CALL COSGEN (JR - 1, 1, ZERO, ONE, TCOS(K4), 4*NR-K4+1)
      CALL MERGE (TCOS, K1, KR, K1 + KR, JR - 1, 0, 4*NR)
      CALL COSGEN (KR, 1, HALF, FDEN, TCOS(K1+1), 4*NR-K1)
      K2 = KR
      K4 = K1 + K2 + 1
      CALL COSGEN (LR, 1, HALF, FDEN, TCOS(K4), 4*NR-K4+1)
      K3 = LR
      K4 = 0
      CALL TRI3 (MR, vecA, vecBB, vecC, K, vecB, vecB2, vecB3, TCOS, &
                 4*NR, vecD, vecW, vecW2, vecW3)
      vecB(:MR) = vecB(:MR) + vecB2(:MR)
      TCOS(1) = TWO
      CALL TRIX (1, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
      matQ(:MR,1) = matQ(:MR,1) + vecB(:MR)
      GO TO 194
  192 CONTINUE
      vecB(:MR) = matQ(:MR,NLAST)
      GO TO 196
  194 CONTINUE
      J = NLAST - JR
      vecB(:MR) = matQ(:MR,NLAST) + matQ(:MR,J)
  196 CONTINUE
      JM2 = NLAST - I2R
      IF (JR == 1) THEN
         matQ(:MR,NLAST) = ZERO
      ELSE
         IF (NROD == 0) THEN
            matQ(:MR,NLAST) = vecP(IP+1:MR+IP)
            IP = IP - MR
         ELSE
            matQ(:MR,NLAST) = matQ(:MR,NLAST) - matQ(:MR,JM2)
         ENDIF
      ENDIF
      CALL COSGEN (KR, 1, HALF, FDEN, TCOS, 4*NR)
      CALL COSGEN (LR, 1, HALF, FDEN, TCOS(KR+1), 4*NR-KR)
      IF (LR == 0) THEN
         vecB(:MR) = FISTAG*vecB(:MR)
      ENDIF
      CALL TRIX (KR, LR, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
      matQ(:MR,NLAST) = matQ(:MR,NLAST) + vecB(:MR)
      NLASTP = NLAST
  206 CONTINUE
      JSTEP = JR
      JR = I2R
      I2R = I2R/2
      IF (JR == 0) GO TO 222
      SELECT CASE (MIXBND) 
      CASE DEFAULT
         JSTART = 1 + JR
      CASE (2) 
         JSTART = JR
      END SELECT
      KR = KR - JR
      IF (NLAST + JR <= N) THEN
         KR = KR - JR
         NLAST = NLAST + JR
         JSTOP = NLAST - JSTEP
      ELSE
         JSTOP = NLAST - JR
      ENDIF
      LR = KR - JR
      CALL COSGEN (JR, 1, HALF, ZERO, TCOS, 4*NR)
      DO J = JSTART, JSTOP, JSTEP
         JM2 = J - JR
         JP2 = J + JR
         IF (J == JR) THEN
            vecB(:MR) = matQ(:MR,J) + matQ(:MR,JP2)
         ELSE
            vecB(:MR) = matQ(:MR,J) + matQ(:MR,JM2) + matQ(:MR,JP2)
         ENDIF
         IF (JR == 1) THEN
            matQ(:MR,J) = ZERO
         ELSE
            JM1 = J - I2R
            JP1 = J + I2R
            matQ(:MR,J) = HALF*(matQ(:MR,J)-matQ(:MR,JM1)-matQ(:MR,JP1))
         ENDIF
         CALL TRIX (JR, 0, MR, vecA, vecBB, vecC, vecB, TCOS, 4*NR, vecD, vecW)
         matQ(:MR,J) = matQ(:MR,J) + vecB(:MR)
      END DO
      NROD = 1
      IF (NLAST + I2R <= N) NROD = 0
      IF (NLASTP /= NLAST) GO TO 194
      GO TO 206
  222 CONTINUE
      vecW(1) = IPSTOR
      RETURN 
      END SUBROUTINE POISN2


      SUBROUTINE POISP2(M, N, vecA, vecBB, vecC, matQ, IDIMQ, &
                        vecB, vecB2, vecB3, vecW, vecW2, vecW3, &
                        vecD, TCOS, vecP, IP)
      implicit none
      
      DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0, HALF = 0.5D0, &
                                     ONE  = 1.0D0, TWO  = 2.0D0, &
                                     FOUR = 4.0D0

!-----------------------------------------------
!   D u m m y   A r g u m e n t s
!-----------------------------------------------
      INTEGER, INTENT(IN) :: M, N, IDIMQ, IP
      DOUBLE PRECISION, DIMENSION(M), INTENT(IN) :: vecA, vecBB, vecC
      DOUBLE PRECISION, DIMENSION(4*N), INTENT(INOUT) :: TCOS
      DOUBLE PRECISION, DIMENSION(IDIMQ,N), INTENT(INOUT) :: matQ
      DOUBLE PRECISION, DIMENSION(IP),INTENT(INOUT) :: vecP
      DOUBLE PRECISION, DIMENSION(M),INTENT(INOUT) :: vecB, vecB2, vecB3, &
                                                      vecD, vecW, vecW2, vecW3
!-----------------------------------------------
!   L o c a l   V a r i a b l e s
!-----------------------------------------------
      INTEGER          :: MR, NR, NRM1, J, NRMJ, NRPJ, I, IPSTOR, LH
      DOUBLE PRECISION :: S, T
!-----------------------------------------------
!
!     SUBROUTINE TO SOLVE POISSON EQUATION WITH PERIODIC BOUNDARY
!     CONDITIONS.
!
      MR = M
      NR = (N + 1)/2
      NRM1 = NR - 1
      IF (2*NR == N) THEN
!
!     EVEN NUMBER OF UNKNOWNS
!
         DO J = 1, NRM1
            NRMJ = NR - J
            NRPJ = NR + J
            DO I = 1, MR
               S = matQ(I,NRMJ) - matQ(I,NRPJ)
               T = matQ(I,NRMJ) + matQ(I,NRPJ)
               matQ(I,NRMJ) = S
               matQ(I,NRPJ) = T
            END DO
         END DO
         matQ(:MR,NR) = TWO*matQ(:MR,NR)
         matQ(:MR,N)  = TWO*matQ(:MR,N)
         CALL POISD2 (MR, NRM1, 1, vecA, vecBB, vecC, matQ, IDIMQ, &
                      vecB, vecW, vecD, TCOS, vecP, IP)
         IPSTOR = vecW(1)
         CALL POISN2 (MR, NR + 1, 1, 1, vecA, vecBB, vecC, matQ(:,NR:),  &
                      IDIMQ, vecB, vecB2, vecB3, vecW, vecW2, vecW3, vecD, &
                      TCOS, vecP, IP)
         IPSTOR = MAX0(IPSTOR,INT(vecW(1)))
         DO J = 1, NRM1
            NRMJ = NR - J
            NRPJ = NR + J
            DO I = 1, MR
               S = HALF*(matQ(I,NRPJ)+matQ(I,NRMJ))
               T = HALF*(matQ(I,NRPJ)-matQ(I,NRMJ))
               matQ(I,NRMJ) = S
               matQ(I,NRPJ) = T
            END DO
         END DO
         matQ(:MR,NR) = HALF*matQ(:MR,NR)
         matQ(:MR,N)  = HALF*matQ(:MR,N)
      ELSE
         DO J = 1, NRM1
            NRPJ = N + 1 - J
            DO I = 1, MR
               S = matQ(I,J) - matQ(I,NRPJ)
               T = matQ(I,J) + matQ(I,NRPJ)
               matQ(I,J) = S
               matQ(I,NRPJ) = T
            END DO
         END DO
         matQ(:MR,NR) = TWO*matQ(:MR,NR)
         LH = NRM1/2
         DO J = 1, LH
            NRMJ = NR - J
            DO I = 1, MR
               S = matQ(I,J)
               matQ(I,J) = matQ(I,NRMJ)
               matQ(I,NRMJ) = S
            END DO
         END DO
         CALL POISD2 (MR, NRM1, 2, vecA, vecBB, vecC, matQ, IDIMQ,  &
                      vecB, vecW, vecD, TCOS, vecP, IP)
         IPSTOR = vecW(1)
         CALL POISN2 (MR, NR, 2, 1, vecA, vecBB, vecC, matQ(:,NR:), IDIMQ, &
                      vecB, vecB2, vecB3, vecW, vecW2, vecW3, vecD, TCOS, &
                      vecP, IP)
         IPSTOR = MAX0(IPSTOR,INT(vecW(1)))
         DO J = 1, NRM1
            NRPJ = NR + J
            DO I = 1, MR
               S = HALF*(matQ(I,NRPJ)+matQ(I,J))
               T = HALF*(matQ(I,NRPJ)-matQ(I,J))
               matQ(I,NRPJ) = T
               matQ(I,J) = S
            END DO
         END DO
         matQ(:MR,NR) = HALF*matQ(:MR,NR)
         DO J = 1, LH
            NRMJ = NR - J
            DO I = 1, MR
               S = matQ(I,J)
               matQ(I,J)    = matQ(I,NRMJ)
               matQ(I,NRMJ) = S
            END DO
         END DO
      ENDIF
      vecW(1) = IPSTOR
!
! REVISION HISTORY---
!
! SEPTEMBER 1973    VERSION 1
! APRIL     1976    VERSION 2
! JANUARY   1978    VERSION 3
! DECEMBER  1979    VERSION 3.1
! FEBRUARY  1985    DOCUMENTATION UPGRADE
! NOVEMBER  1988    VERSION 3.2, FORTRAN 77 CHANGES
! June      2004    Version 5.0, Fortran 90 changes
!-----------------------------------------------------------------------
      END SUBROUTINE POISP2