Files
@ 0f7c68754475
Branch filter:
Location: AENC/resampling_chain/main.tex - annotation
0f7c68754475
104.3 KiB
text/x-tex
nicer proof
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 | 415095330321 415095330321 415095330321 c4675a568c22 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 f99db951a095 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 3f50b7d8a179 3f50b7d8a179 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 82e14757bd1a 0aef3bd8b292 0aef3bd8b292 c2fa910c4916 5e80cf059be7 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 c4675a568c22 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 9f86b29b20b0 39a2a174b465 9f86b29b20b0 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 9f86b29b20b0 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 241841a8e5cd ecd7e8aa6daf 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 702cfce575b3 ecd7e8aa6daf 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 c71ac3dcabc6 415095330321 c71ac3dcabc6 c71ac3dcabc6 0aef3bd8b292 0aef3bd8b292 c71ac3dcabc6 415095330321 415095330321 0aef3bd8b292 415095330321 415095330321 415095330321 0aef3bd8b292 415095330321 415095330321 0aef3bd8b292 415095330321 0aef3bd8b292 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 0aef3bd8b292 d4a402112276 415095330321 415095330321 415095330321 415095330321 415095330321 c92487797448 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 9f86b29b20b0 415095330321 415095330321 415095330321 415095330321 415095330321 0aef3bd8b292 415095330321 415095330321 415095330321 415095330321 0aef3bd8b292 0aef3bd8b292 0aef3bd8b292 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 d4a402112276 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 0aef3bd8b292 415095330321 0aef3bd8b292 0aef3bd8b292 0aef3bd8b292 415095330321 415095330321 0aef3bd8b292 415095330321 415095330321 415095330321 415095330321 415095330321 c71ac3dcabc6 c92487797448 c71ac3dcabc6 415095330321 3f50b7d8a179 415095330321 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 415095330321 415095330321 415095330321 415095330321 0aef3bd8b292 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 0aef3bd8b292 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 82e90f72c8ad 415095330321 415095330321 415095330321 415095330321 82e90f72c8ad 82e90f72c8ad 82e90f72c8ad 82e90f72c8ad 82e90f72c8ad 82e90f72c8ad 82e90f72c8ad 82e90f72c8ad 415095330321 415095330321 9f86b29b20b0 9f86b29b20b0 415095330321 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 9f86b29b20b0 415095330321 415095330321 415095330321 0aef3bd8b292 afc7a8577863 afc7a8577863 afc7a8577863 afc7a8577863 afc7a8577863 afc7a8577863 afc7a8577863 afc7a8577863 afc7a8577863 0aef3bd8b292 5f02d6bd36ea 0aef3bd8b292 5f02d6bd36ea 5f02d6bd36ea 0aef3bd8b292 0f7c68754475 afc7a8577863 0f7c68754475 afc7a8577863 0f7c68754475 0aef3bd8b292 5f02d6bd36ea 0aef3bd8b292 82e14757bd1a 0aef3bd8b292 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 f99db951a095 82e14757bd1a c71ac3dcabc6 82e14757bd1a 71d7c8f3b5ef 82e14757bd1a c71ac3dcabc6 82e14757bd1a 82e14757bd1a 280d2941c33b 82e14757bd1a 280d2941c33b 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a c71ac3dcabc6 82e14757bd1a 0aef3bd8b292 0aef3bd8b292 71d7c8f3b5ef 82e14757bd1a 82e14757bd1a c92487797448 c92487797448 82e14757bd1a c92487797448 c92487797448 82e14757bd1a b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e 82e14757bd1a 82e14757bd1a b09c769c096e c92487797448 82e14757bd1a 82e14757bd1a 82e14757bd1a c92487797448 b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e c92487797448 82e14757bd1a b09c769c096e c92487797448 b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e c92487797448 82e14757bd1a c92487797448 b09c769c096e b09c769c096e b09c769c096e b09c769c096e b09c769c096e c92487797448 b09c769c096e b09c769c096e b09c769c096e b09c769c096e c92487797448 82e14757bd1a 82e14757bd1a 82e14757bd1a c92487797448 b09c769c096e c92487797448 c92487797448 71d7c8f3b5ef 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 71d7c8f3b5ef 82e14757bd1a 71d7c8f3b5ef 82e14757bd1a 71d7c8f3b5ef c2fa910c4916 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 82e14757bd1a 71d7c8f3b5ef 71d7c8f3b5ef 5236ff40cd19 5236ff40cd19 afc7a8577863 5236ff40cd19 5236ff40cd19 5f02d6bd36ea 604c0595b81c 5e80cf059be7 604c0595b81c 3f50b7d8a179 604c0595b81c 3f50b7d8a179 604c0595b81c 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 604c0595b81c 3f50b7d8a179 604c0595b81c 3f50b7d8a179 604c0595b81c 5e80cf059be7 604c0595b81c 5e80cf059be7 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 0f7c68754475 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5f02d6bd36ea 5e80cf059be7 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 17575ab3f75c 5e80cf059be7 17575ab3f75c 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 5e80cf059be7 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 44a98068c533 44a98068c533 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 5e80cf059be7 5e80cf059be7 5e80cf059be7 5e80cf059be7 5e80cf059be7 29be8ea7ee3c 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 5e80cf059be7 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 5e80cf059be7 5e80cf059be7 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 5e80cf059be7 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 3f50b7d8a179 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 44a98068c533 44a98068c533 5e80cf059be7 5e80cf059be7 3f50b7d8a179 5e80cf059be7 5e80cf059be7 5e80cf059be7 330b6c1a9887 5e80cf059be7 3f50b7d8a179 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 5e80cf059be7 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 330b6c1a9887 5e80cf059be7 5e80cf059be7 5e80cf059be7 5236ff40cd19 5236ff40cd19 5236ff40cd19 fd8b2cc696df 241841a8e5cd 5236ff40cd19 5236ff40cd19 fd8b2cc696df fd8b2cc696df fd8b2cc696df fd8b2cc696df fd8b2cc696df fd8b2cc696df 0aef3bd8b292 5236ff40cd19 5e80cf059be7 0aef3bd8b292 5236ff40cd19 241841a8e5cd 241841a8e5cd 241841a8e5cd 5e80cf059be7 5e80cf059be7 241841a8e5cd 5e80cf059be7 5236ff40cd19 241841a8e5cd 5e80cf059be7 241841a8e5cd 5e80cf059be7 241841a8e5cd 241841a8e5cd 5e80cf059be7 241841a8e5cd 5e80cf059be7 241841a8e5cd 5236ff40cd19 5236ff40cd19 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 5236ff40cd19 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 3f50b7d8a179 241841a8e5cd 241841a8e5cd 241841a8e5cd 3f50b7d8a179 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 3f50b7d8a179 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 3f50b7d8a179 241841a8e5cd 3f50b7d8a179 241841a8e5cd 241841a8e5cd 3f50b7d8a179 241841a8e5cd 241841a8e5cd 3f50b7d8a179 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 5236ff40cd19 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 241841a8e5cd 5236ff40cd19 241841a8e5cd aad4326b06f9 c92487797448 c92487797448 c92487797448 c2fa910c4916 c2fa910c4916 c2fa910c4916 ffbfb3763633 c2fa910c4916 c2fa910c4916 c2fa910c4916 ffbfb3763633 c2fa910c4916 ffbfb3763633 ffbfb3763633 c2fa910c4916 ffbfb3763633 ffbfb3763633 ffbfb3763633 ffbfb3763633 ffbfb3763633 ffbfb3763633 aad4326b06f9 c92487797448 aad4326b06f9 ffbfb3763633 c2fa910c4916 c2fa910c4916 0d0911198b0d c2fa910c4916 c2fa910c4916 c2fa910c4916 0d0911198b0d c2fa910c4916 0d0911198b0d 0d0911198b0d 0d0911198b0d c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 ffbfb3763633 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 ffbfb3763633 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 0d0911198b0d 0d0911198b0d 0d0911198b0d ffbfb3763633 aad4326b06f9 0d0911198b0d c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 0d0911198b0d 0d0911198b0d c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 c2fa910c4916 0d0911198b0d 0d0911198b0d ffbfb3763633 0d0911198b0d 0d0911198b0d 0d0911198b0d ffbfb3763633 0d0911198b0d ffbfb3763633 0d0911198b0d 0d0911198b0d ffbfb3763633 0d0911198b0d ffbfb3763633 0d0911198b0d 0d0911198b0d 0d0911198b0d ffbfb3763633 0d0911198b0d ffbfb3763633 0d0911198b0d 0d0911198b0d 0d0911198b0d ffbfb3763633 ffbfb3763633 c2fa910c4916 ffbfb3763633 c2fa910c4916 0d0911198b0d c2fa910c4916 aad4326b06f9 5236ff40cd19 5236ff40cd19 5236ff40cd19 96df08e480a7 96df08e480a7 96df08e480a7 96df08e480a7 96df08e480a7 96df08e480a7 96df08e480a7 96df08e480a7 96df08e480a7 5236ff40cd19 5236ff40cd19 5236ff40cd19 241841a8e5cd 53e0f54cd945 53e0f54cd945 241841a8e5cd 5236ff40cd19 5236ff40cd19 53e0f54cd945 5236ff40cd19 5236ff40cd19 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 241841a8e5cd 53e0f54cd945 53e0f54cd945 53e0f54cd945 241841a8e5cd 241841a8e5cd 53e0f54cd945 53e0f54cd945 53e0f54cd945 241841a8e5cd 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 241841a8e5cd 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 241841a8e5cd 53e0f54cd945 53e0f54cd945 53e0f54cd945 241841a8e5cd 241841a8e5cd 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 53e0f54cd945 d3ea27296b0f 5236ff40cd19 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 415095330321 82e90f72c8ad | \documentclass[a4paper,11pt,english,final]{article}
\pdfoutput=1
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{fullpage}
\usepackage{graphics}
\usepackage{diagbox}
\usepackage[table]{xcolor}% http://ctan.org/pkg/xcolor
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{caption}
\captionsetup{compatibility=false}
\graphicspath{{./}}
\usepackage{tikz}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{bm}
\usepackage{bbm}
%\usepackage{bbold}
\usepackage{verbatim}
%for correcting large brackets spacing
\usepackage{mleftright}\mleftright
\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{enumitem}
\usepackage{float}
%\usepackage{titling}
%\setlength{\droptitle}{-5mm}
%\usepackage{MnSymbol}
\newcommand{\cupdot}{\overset{.}{\cup}}
\newcommand{\pvp}{\vec{p}{\kern 0.45mm}'}
\DeclarePairedDelimiter\bra{\langle}{\rvert}
\DeclarePairedDelimiter\ket{\lvert}{\rangle}
\DeclarePairedDelimiterX\braket[2]{\langle}{\rangle}{#1 \delimsize\vert #2}
\newcommand{\underflow}[2]{\underset{\kern-60mm \overbrace{#1} \kern-60mm}{#2}}
\def\Ind(#1){{{\tt Ind}({#1})}}
\def\Id{\mathrm{Id}}
\def\Pr{\mathrm{Pr}}
\def\Tr{\mathrm{Tr}}
\def\im{\mathrm{im}}
\newcommand{\bOt}[1]{\widetilde{\mathcal O}\left(#1\right)}
\newcommand{\bigO}[1]{\mathcal O\left(#1\right)}
\newcommand{\Res}[1]{\#\mathrm{Res}\left(#1\right)}
\newcommand{\QMAo}{\textsf{QMA$_1$}}
\newcommand{\BQP}{\textsf{BQP}}
\newcommand{\NP}{\textsf{NP}}
\newcommand{\SharpP}{\textsf{\# P}}
\newcommand{\diam}[1]{\mathcal{D}\left(#1\right)}
\newcommand{\paths}[1]{\mathcal{P}\left(#1\to\mathbf{1}\right)}
\newcommand{\start}[1]{\textsc{start}\left(#1\right)}
\newcommand{\maxgap}[1]{\mathrm{maxgap}\left(#1\right)}
\newcommand{\gaps}[1]{#1_{\mathrm{gaps}}}
\renewcommand{\P}{\mathbb{P}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\NZ}[1]{\mathrm{NZ}^{(#1)}}
\newcommand{\Z}[1]{\mathrm{Z}^{(#1)}}
%\newcommand{\dist}[1]{d_{\!\!\not\,#1}}
\newcommand{\dist}[1]{d_{\neg #1}}
\newcommand{\todo}[1]{{\color{red}\textbf{TODO:} #1}}
\long\def\ignore#1{}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}[theorem]{Corollary}%[theorem]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{prop}[theorem]{Proposition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{remark}[theorem]{Remark}
\newenvironment{proof}
{\noindent {\bf Proof. }}
{{\hfill $\Box$}\\ \smallskip}
\usepackage[final]{hyperref}
\hypersetup{
colorlinks = true,
allcolors = {blue},
}
\usepackage{ifpdf}
\ifpdf
\typeout{^^J *** PDF mode *** }
% \input{myBiblatex.tex}
% \addbibresource{LLL.bib}
%\else
% \typeout{^^J *** DVI mode ***}
% \hypersetup{breaklinks = true}
% \usepackage[quadpoints=false]{hypdvips}
\let\oldthebibliography=\thebibliography
\let\endoldthebibliography=\endthebibliography
\renewenvironment{thebibliography}[1]{%
\begin{oldthebibliography}{#1}%
\setlength{\itemsep}{-.3ex}%
}%
{%
\end{oldthebibliography}%
}
\fi
%opening
\title{Criticality of resampling on the cycle / in the evolution model}
%\author{?\thanks{QuSoft, CWI and University of Amsterdam, the Netherlands. \texttt{?@cwi.nl} }
%\and
%?%
%}
%\thanksmarkseries{arabic}
%\renewcommand{\thefootnote}{\fnsymbol{footnote}}
%\date{\vspace{-12mm}}
\begin{document}
\maketitle
\begin{abstract}
The model we consider is the following~\cite{ResampleLimit}: We have a cycle of length $n\geq 3$. Initially we set each site to $0$ or $1$ independently at each site, such that we set it $0$ with probability $p$. After that in each step we select a random vertex with $0$ value and resample it together with its two neighbours assigning $0$ with probability $p$ to each vertex just as initially. The question we try to answer is what is the expected number of resamplings performed before reaching the all $1$ state.
We present strong evidence for a remarkable critical behaviour. We conjecture that there exists some $p_c\approx0.62$, such that for all $p\in[0,p_c)$ the expected number of resamplings is bounded by a $p$ dependent constant times $n$, whereas for all $p\in(p_c,1]$ the expected number of resamplings is exponentially growing in $n$.
\end{abstract}
%Let $R(n)$ denote this quantity for a length $n\geq 3$ cycle.
We can think about the resampling procedure as a Markov chain. To describe the corresponding matrix we introduce some notation. For $b\in\{0,1\}^n$ let $r(b,i,(x_{-1},x_0,x_1))$ denote the bit string which differs form $b$ by replacing the bits at index $i-1$,$i$ and $i+1$ with the values in $x$, interpreting the indices $\!\!\!\!\mod n$. Also for $x\in\{0,1\}^k$ let $p(x)=p((x_1,\ldots,x_k))=\prod_{i=1}^{k}p^{(1-x_i)}(1-p)^{x_i}$. Now we can describe the matrix of the Markov chain. We use row vectors for the elements of the probability distribution indexed by bitstrings of length $n$. Let $M_{(n)}$ denote the matrix of the leaking Markov chain:
$$
M_{(n)}=\sum_{b\in\{0,1\}^n\setminus{\{1\}^n}}\sum_{i\in[n]:b_i=0}\sum_{x\in\{0,1\}^3}E_{(b,r(b,i,x))}\frac{p(x)}{n-|b|},
$$
where $E_{(i,j)}$ denotes the matrix that is all $0$ except $1$ at the $(i,j)$th entry.
We want to calculate the average number of resamplings $R^{(n)}$, which we define as the expected number of resamplings divided by $n$. For this let $\rho,\mathbbm{1}\in[0,1]^{2^n}$ be indexed with elements of $\{0,1\}^n$ such that $\rho_b=p(b)$ and $\mathbbm{1}_b=1$. Then we use that the expected number of resamplings is just the hitting time of the Markov chain:
\begin{align*}
R^{(n)}:&=\mathbb{E}(\#\{\text{resampling before termination}\})/n\\
&=\sum_{k=1}^{\infty}P(\text{at least } k \text{ resamplings are performed})/n\\
&=\sum_{k=1}^{\infty}\rho M_{(n)}^k \mathbbm{1}/n\\
&=\sum_{k=0}^{\infty}a^{(n)}_k p^k
\end{align*}
\begin{table}[]
\centering
\caption{Table of the coefficients $a^{(n)}_k$}
\label{tab:coeffs}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{c|ccccccccccccccccccccc}
\backslashbox[10mm]{$n$}{$k$} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ \hline
3 & 0 & 1 & \cellcolor{blue!25}2 & 3+1/3 & 5.00 & 7.00 & 9.33 & 12.00 & 15.00 & 18.33 & 22.00 & 26.00 & 30.33 & 35.00 & 40.00 & 45.333 & 51.000 & 57.000 & 63.333 & 70.000 & 77.000 \\
4 & 0 & 1 & 2 & \cellcolor{blue!25}3+2/3 & 6.16 & 9.66 & 14.3 & 20.33 & 27.83 & 37.00 & 48.00 & 61.00 & 76.16 & 93.66 & 113.6 & 136.33 & 161.83 & 190.33 & 222.00 & 257.00 & 295.50 \\
5 & 0 & 1 & 2 & 3+2/3 & \cellcolor{blue!25}6.44 & 10.8 & 17.3 & 26.65 & 39.43 & 56.48 & 78.65 & 106.9 & 142.2 & 185.8 & 238.7 & 302.41 & 378.05 & 467.13 & 571.14 & 691.69 & 830.44 \\
6 & 0 & 1 & 2 & 3+2/3 & 6.44 & \cellcolor{blue!25}11.0 & 18.5 & 30.02 & 47.10 & 71.68 & 106.0 & 152.9 & 215.4 & 297.4 & 403.1 & 537.21 & 705.25 & 913.31 & 1168.2 & 1477.4 & 1849.1 \\
7 & 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & \cellcolor{blue!25}18.7 & 31.21 & 50.83 & 80.80 & 125.3 & 189.7 & 280.8 & 407.0 & 578.6 & 808.13 & 1110.2 & 1502.6 & 2005.6 & 2643.2 & 3443.1 \\
8 & 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & \cellcolor{blue!25}31.44 & 52.08 & 84.95 & 136.0 & 213.6 & 328.9 & 496.5 & 735.6 & 1070.7 & 1532.5 & 2159.5 & 2998.8 & 4108.1 & 5556.7 \\
9 & 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & \cellcolor{blue!25}52.30 & 86.27 & 140.7 & 226.3 & 358.4 & 558.4 & 855.4 & 1289.0 & 1911.5 & 2791.4 & 4017.2 & 5701.4 & 7985.9 \\
10& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & 52.30 & \cellcolor{blue!25}86.49 & 142.1 & 231.6 & 373.4 & 594.8 & 934.4 & 1447.1 & 2209.0 & 3324.6 & 4934.8 & 7226.9 & 10447. \\
\vdots \\
15& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.08 & 18.76 & 31.45 & 52.31 & 86.49 & 142.33 & 233.31 & 381.17 & 621.02 & \cellcolor{blue!25}1009.38 & 1637.13 & % 2650.74 & 4285.68 & 6913.55 & 11171.2 & 18052.2
\end{tabular}
}
\end{table}
We observe that this is a power series in $p$. We discovered a very regular structure in this power series. It seems that for all $k\in\mathbb{N}$ and for all $n>k$ we have that $a^{(n)}_k$ is constant, this conjecture we verified using a computer up to $n=14$.
\newpage
\noindent Based on our calculations presented in Table~\ref{tab:coeffs} and Figure~\ref{fig:coeffs_conv_radius} we make the following conjectures:
\begin{enumerate}[label=(\roman*)]
\item $\forall k\in\mathbb{N}, \forall n\geq 3 : a^{(n)}_k\geq 0$ \label{it:pos}
(A simpler version: $\forall k>0: a_k^{(3)}=(k+1)(k+2)/6$)
\item $\forall k\in\mathbb{N}, \forall n>m\geq 3 : a^{(n)}_k\geq a^{(m)}_k$ \label{it:geq}
\item $\forall k\in\mathbb{N}, \forall n,m\geq \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const}
\item $\exists p_c=\lim\limits_{k\rightarrow\infty}1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$ \label{it:lim}
\end{enumerate}
We also conjecture that $p_c\approx0.61$, see Figure~\ref{fig:coeffs_conv_radius}.
\begin{figure}[!htb]\centering
\includegraphics[width=0.5\textwidth]{coeffs_conv_radius.pdf}
%\includegraphics[width=0.5\textwidth]{log_coeffs.pdf}
\caption{$1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$} %$\frac{1}{\sqrt[k]{a_k^{(k+1)}}}$
\label{fig:coeffs_conv_radius}
\end{figure}
For reference, we also explicitly give formulas for $R^{(n)}(p)$ for small $n$. We also give them in terms of $q=1-p$ because they sometimes look nicer that way.
\begin{align*}
R^{(3)}(p) &= \frac{1-(1-p)^3}{3(1-p)^3}
= \frac{1-q^3}{3q^3}\\
R^{(4)}(p) &= \frac{p(6-12p+10p^2-3p^3)}{6(1-p)^4}
= \frac{(1-q)(1+q+q^2+3q^3)}{6q^4}\\
R^{(5)}(p) &= \frac{p(90-300p+435p^2-325p^3+136p^4-36p^5+6p^6)}{15(1-p)^5(6-2p+p^2)}\\
&= \frac{(1-q)(6+5q+6q^2+21q^3+46q^4+6q^6)}{15q^5(5+q^2)}
\end{align*}
For $n=3$ the system becomes very simple because regardless of the current state, the probability of going to $111$ is always equal to $(1-p)^3$. Therefore the expected number of resamplings is simply the expectation of a geometric distribution. This gives the formula for $R^{(3)}(p)$ as shown above. Note that the $k$-th coefficient of the powerseries of a function $f(p)$ is given by $\frac{1}{k!}\left.\frac{d^k f}{dp^k}\right|_{p=0}$, i.e. the $k$-th derivative to $p$ evaluated at $0$ divided by $k!$. For the function $R^{(3)}(p) =\frac{(1-p)^{-3} - 1}{3} $ this yields $a^{(3)}_k = (k+2)(k+1)/6$ for $k\geq 1$ and $a^{(3)}_0=0$.
We can do the same for $n=4,5$, which gives, for $k\geq 1$ (with Mathematica):
\begin{align*}
a^{(3)}_k &= \frac{(k+2)(k+1)}{6}\\
a^{(4)}_k &= \frac{1}{6}\left(2+\frac{(k+3)(k+2)(k+1)}{6}\right)\\
a^{(5)}_k &= \frac{1}{15}\left(\frac{(k+4)(k+3)(k+2)(k+1)}{20} - \frac{(k+3)(k+2)(k+1)}{30} - \frac{(k+2)(k+1)}{50} + \frac{76(k+1)}{25}\right.\\
& \qquad\quad \left. + \frac{626}{125} - \frac{4}{250}
\left( \left(\frac{1+i\sqrt{5}}{6}\right)^k(94-25\sqrt{5}i)+\left(\frac{1-i\sqrt{5}}{6}\right)^k(94+25\sqrt{5}i) \right)
\right)
\end{align*}
and from $n=6$ and onwards, the expression becomes complicated and Mathematica can only give expressions including roots of polynomials.
~
If statements \ref{it:pos}-\ref{it:lim} are true, then we can define the function
$$R^{(\infty)}(p):=\sum_{k=0}^{\infty}a^{(k+1)}_k p^k,$$
which would then have radius of convergence $p_c$, also it would satisfy for all $p\in[0,p_c)$ that $R^{(n)}(p)\leq R^{(\infty)}(p)$ and $\lim\limits_{n\rightarrow\infty}R^{(n)}(p)=R^{(\infty)}(p)$.
It would also imply, that for all $p\in(p_c,1]$ we get $R^{(n)}(p)=\Omega\left(\left(\frac{p}{p_c}\right)^{n/2}\right)$.
This would then imply a very strong critical behaviour. It would mean that for all $p\in[0,p_c)$ the expected number of resamplings is bounded by a constant $R^{(\infty)}(p)$ times $n$, whereas for all $p\in(p_c,1]$ the expected number of resamplings is exponentially growing in $n$.
Now we turn to the possible proof techniques for justifying the conjectures \ref{it:pos}-\ref{it:lim}.
First note that $\forall n\geq 3$ we have $a^{(n)}_0=0$, since for $p=0$ the expected number of resamplings is $0$.
Also note that the expected number of initial $0$s is $p\cdot n$. If $p\ll1/n$, then with high probability there is a single $0$ initially and the first resampling will fix it, so the linear term in the expected number of resamplings is $np$, therefore $\forall n\geq 3$, $a^{(n)}_1=1$.
For the second order coefficients it is a bit harder to argue, but one can use the structure of $M_{(n)}$ to come up with a combinatorial proof. To see this, first assume we have a vector $e_b$ having a single non-zero, unit element indexed with bitstring $b$.
Observe that $e_bM_{(n)}$ is a vector containing polynomial entries, such that the only indices $b'$ which have a non-zero constant term must have $|b'|\geq|b|+1$, since if a resampling produces a $0$ entry it also introduces a $p$ factor. Using this observation one can see that the second order term can be red off from $\rho M_{(n)}\mathbbm{1}+\rho M_{(n)}^2\mathbbm{1}$,
which happens to be $2n$. (Note that it is already a bit surprising, form the steps of the combinatorial proof one would expect $n^2$ terms appearing, but they just happen to cancel each other.) Using similar logic one should be able to prove the claim for $k=3$, but for larger $k$s it seems to quickly get more involved.
The question is how could we prove the statements \ref{it:pos}-\ref{it:lim} for a general $k$?
\appendix
\section{Lower bound on $R^{(n)}(p)$}
Proof that \ref{it:pos} and \ref{it:lim} imply that for any fixed $p>p_c$ we have $R^{(n)}(p)\in\Omega\left(\left(\frac{p}{p_c}\right)^{n/2}\right)$.
By definition of $p_c = \lim_{k\to\infty} 1\left/ \sqrt[k]{a_k^{(k+1)}} \right.$ we know that for any $\epsilon$ there exists a $k_\epsilon$ such that for all $k\geq k_\epsilon$ we have $a_k^{(k+1)}\geq (p_c + \epsilon)^{-k}$. Now note that $R^{(n)}(p) \geq a_{n-1}^{(n)}p^{n-1}$ since all terms of the power series are positive, so for $n\geq k_\epsilon$ we have $R^{(n)}(p)\geq (p_c +\epsilon)^{-(n-1)}p^{n-1}$. Note that
\begin{align*}
R^{(n)}(p)\geq(p_c+\epsilon)^{-(n-1)}p^{n-1}=\left(\frac{p}{p_c+\epsilon}\right)^{n-1} \geq \left(\frac{p}{p_c}\right)^{\frac{n-1}{2}},
\end{align*}
where the last inequality holds for $\epsilon\leq\sqrt{p_c}(\sqrt{p}-\sqrt{p_c})$.
\section{Calculating the coefficients $a_k^{(n)}$}
Let $\rho'\in\mathbb{R}[p]^{2^n}$ be a vector of polynomials, and let $\text{rank}(\rho')$ be defined in the following way:
$$\text{rank}(\rho'):=\min_{b\in\{0,1\}^n}\left( |b|+ \text{maximal } k\in\mathbb{N} \text{ such that } p^k \text{ divides } \rho'_b\right).$$
Clearly for any $\rho'$ we have that $\text{rank}(\rho' M_{(n)})\geq \text{rank}(\rho') + 1$. Another observation is, that all elements of $\rho'$ are divisible by $p^{\text{rank}(\rho')-n}$.
We observe that for the initial $\rho$ we have that $\text{rank}(\rho)=n$, therefore $\text{rank}(\rho*(M_{(n)}^k))\geq n+k$, and so $\rho*(M_{(n)}^k)*\mathbbm{1}$ is obviously divisible by $p^{k}$. This implies that $a_k^{(n)}$ can be calculated by only looking at $\rho*(M_{(n)}^1)*\mathbbm{1}, \ldots, \rho*(M_{(n)}^k)*\mathbbm{1}$.
\newpage
\section{Quasiprobability method}
Let us first introduce notation for paths of the Markov Chain
\begin{definition}[Paths]
We define a \emph{path} of the Markov Chain as a sequence of states and resampling choices $\xi=((b_0,r_0),(b_1,r_1),...,(b_k,r_k)) \in (\{0,1\}^n\times[n])^k$ indicating that at time $t$ Markov Chain was in state $b_t\in\{0,1\}^n$ and then resampled site $r_t$. We denote by $|\xi|$ the length $k$ of such a path, i.e. the number of resamples that happened, and by $\mathbb{P}[\xi]$ the probability associated to this path.
We denote by $\paths{b}$ the set of all valid paths $\xi$ that start in state $b$ and end in state $\mathbf{1} := 1^n$.
\end{definition}
We can write the expected number of resamplings per site $R^{(n)}(p)$ as
\begin{align}
R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1\}^{n}} \rho_b \; R_b(p) \label{eq:originalsum} ,
\end{align}
where $R_b(p)$ is the expected number of resamplings when starting from configuration $b$
\begin{align*}
R_b(p) &= \sum_{\xi \in \paths{b}} \mathbb{P}[\xi] \cdot |\xi| .
\end{align*}
We consider $R^{(n)}(p)$ as a power series in $p$ and show that many terms in (\ref{eq:originalsum}) cancel out if we only consider the series up to some finite order $p^k$. The main idea is that if a path samples a $0$ then $\mathbb{P}[\xi]$ gains a factor $p$ so paths that contribute to $p^k$ can't be arbitrarily long.\\
To see this, we split the sum in (\ref{eq:originalsum}) into parts that will later cancel out. The initial probabilities $\rho_b$ contain a factor $p$ for every $0$ and a factor $(1-p)$ for every $1$. When expanding this product of $p$s and $(1-p)$s, we see that the $1$s contribute a factor $1$ and a factor $(-p)$ and the $0$s only give a factor $p$. We want to expand this product explicitly and therefore we no longer consider bitstrings $b\in\{0,1\}^n$ but bitstrings $b\in\{0,1,1'\}^n$. We view this as follows: every site can have one of $\{0,1,1'\}$ with `probabilities' $p$, $1$ and $-p$ respectively. A configuration $b=101'1'101'$ now has probability $\rho_{b} = 1\cdot p\cdot(-p)\cdot(-p)\cdot 1\cdot p\cdot(-p) = -p^5$ in the starting state $\rho$. It should not be hard to see that we have
\begin{align*}
R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_{b} \; R_{\bar{b}}(p) ,
\end{align*}
where $\bar{b}$ is the bitstring obtained by changing every $1'$ in it back to a $1$. It is simply the same sum as (\ref{eq:originalsum}) but now every factor $(1-p)$ is explicitly split into $1$ and $(-p)$.
Some terminology: for any configuration we call a $0$ a \emph{particle} (probability $p$) and a $1'$ an \emph{antiparticle} (probability $-p$). We use the word \emph{slot} for a position that is occupied by either a paritcle or antiparticle ($0$ or $1'$). In the initial state, the probability of a configuration is given by $\pm p^{\mathrm{\#slots}}$ where the $\pm$ sign depends on the parity of the number of antiparticles.
We can further rewrite the sum over $b\in\{0,1,1'\}^n$ as a sum over all slot configurations $C\subseteq[n]$ and over all possible fillings of these slots.
\begin{align*}
R^{(n)}(p) &= \frac{1}{n} \sum_{C\subseteq[n]} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
\end{align*}
where $C(f)\in\{0,1,1'\}^n$ denotes a configuration with slots on the sites $C$ filled with (anti)particles described by $f$. The non-slot positions are filled with $1$s.
\begin{definition}[Diameter and gaps] \label{def:diameter} \label{def:gaps}
For a subset $C\subseteq[n]$, we define the \emph{diameter} $\diam{C}$ to be the minimum size of an integer interval $I$ containing $C$. Here we consider both $C$ and the interval modulo $n$. In other words $\diam{C} = \min\{ j \vert \exists i : C\subseteq [i,i+j-1] \}$. We define the \emph{gaps} of $C$, as $I\setminus C$ and denote this by $\gaps{C}$. Note that $\diam{C} = |C| + |\gaps{C}|$. Define $\maxgap{C}$ as the size of the largest connected component of $\gaps{C}$. Figure \ref{fig:diametergap} illustrates these concepts with a picture.
\end{definition}
\begin{figure}
\begin{center}
\includegraphics{diagram_gap.pdf}
\end{center}
\caption{\label{fig:diametergap} Illustration of Definition \ref{def:diameter}. A set $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 positions is shown by the red dots. The smallest interval containing $C$ is $[1,9]$, so the diameter is $\diam{C}=9$. The blue squares denote the set $\gaps{C} = \{3,5,6,8\}$. The dotted line at the top depicts the rest of the cycle which may be much larger. The largest gap of $C$ is $\maxgap{C}=2$ which is the largest connected component of $\gaps{C}$.}
\end{figure}
\begin{claim}[Strong cancellation claim] \label{claim:strongcancel}
The lowest order term in
\begin{align*}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
\end{align*}
is $p^{\diam{C}}$ when $n$ is large enough. All lower order terms cancel out.
\end{claim}
Example: for $C_0=\{1,2,4,7,9\}$ (the configuration shown in Figure \ref{fig:diametergap}) we computed the quantity up to order $p^{20}$ in an infinite system:
\begin{align*}
\sum_{f\in\{0,1'\}^{|C_0|}} \rho_{C_0(f)} R_{C_0(f)} &= 0.0240278 p^{9} + 0.235129 p^{10} + 1.24067 p^{11} + 4.71825 p^{12} \\
&\quad + 14.5555 p^{13} + 38.8307 p^{14} + 93.2179 p^{15} + 206.837 p^{16}\\
&\quad + 432.302 p^{17} + 862.926 p^{18} + 1662.05 p^{19} + 3112.9 p^{20} + \mathcal{O}(p^{21})
\end{align*}
and indeed the lowest order is $\diam{C}=9$.
~
A weaker version of the claim is that if $C$ contains a gap of size $k$, then the sum is zero up to and including order $p^{|C|+k-1}$.
\begin{claim}[Weak cancellation claim] \label{claim:weakcancel}
For $C\subseteq[n]$ a configuration of slot positions, the lowest order term in
\begin{align*}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
\end{align*}
is at least $p^{|C|+\maxgap{C}}$ when $n$ is large enough. All lower order terms cancel out.
\end{claim}
This weaker version would imply \ref{it:const} but for $\mathcal{O}(k^2)$ as opposed to $k+1$.
\newpage
The reason that claim \ref{claim:strongcancel} would prove \ref{it:const} is the following: to know the value of $a_k^{(n)}$, for any $n\geq k+1$ it is enough to look at configurations $C$ with diameter at most $k$, since larger configurations do not contribute to $a_k^{(n)}$.
For a starting state $b\in\{0,1\}^n$ that \emph{does} give a nonzero contribution, you can take that same starting configuration and translate it to get $n$ other configurations that give the same contribution. (An exception is a starting state like $1010101010...$ which you can only translate twice, but we only have to consider configurations with small diameter, in which case you can make exactly $n$ translations.)
Therefore the coefficient in the expected number of resamplings is a multiple of $n$ which Andr\'as already divided out in the definition of $R^{(n)}(p)$. To show \ref{it:const} we argue that this is the \emph{only} dependency on $n$. This is because there are only finitely many (depending on $k$ but not on $n$) configurations where the $k$ slots are nearby regardless of the value of $n$. So there are only finitely many nonzero contributions after translation symmetry was taken out. For example, when considering all starting configurations with 5 slots one might think there are $\binom{n}{5}$ configurations to consider which would be a dependency on $n$ (more than only the translation symmetry). But since most of these configurations have a diameter larger than $k$, they do not contribute to $a_k$. Only finitely many do and that does not depend on $n$.
~
Section \ref{sec:computerb} shows how to compute $R_b$ (this is not relevant for showing the claim) and the section after that shows how to prove the weaker claim.
\newpage
\subsection{Computation of $R_b$} \label{sec:computerb}
By $R_{101}$ we denote $R_b(p)$ for a $b$ that consists of only $1$s except for a single zero. We compute $R_{101}$ up to second order in $p$. This requires the following transitions.
\begin{align*}
\framebox{$1 0 1$} &\to \framebox{$1 1 1$} & (1-p)^3 = 1-3p+3p^2-p^3\\
\hline
\framebox{$1 0 1$} &\to
\begin{cases}
\framebox{$0 1 1$}\\
\framebox{$1 0 1$}\\
\framebox{$1 1 0$}
\end{cases}
& 3p(1-p)^2 = 3p-6p^2+3p^3\\
\hline
\framebox{$1 0 1$} &\to \framebox{$0 1 0$} & p^2(1-p) = p^2-p^3\\
\framebox{$1 0 1$} &\to
\begin{cases}
\framebox{$1 0 0$}\\
\framebox{$0 0 1$}
\end{cases}
& 2p^2(1-p) = 2p^2 - 2p^3\\
\hline
\framebox{$1 0 1$} &\to \framebox{$0 0 0$} & p^3
\end{align*}
With this we can write a recursive formula for the expected number of resamples from $101$:
\begin{align*}
R_{101} &= (1-3p+3p^2 - p^3)(1) + (3p -6p^2 +3p^3) (1+R_{101}) \\
&\quad + (p^2 - p^3) (1+R_{10101}) + (2p^2-2p^3) (1+R_{1001}) + p^3(1+R_{10001}) \\
&= 1 + 3 p + 7 p^2 + 14.6667 p^3 + 29 p^4 + 55.2222 p^5 + 102.444 p^6 + 186.36 p^7 \\
&\quad + 333.906 p^8 + 590.997 p^9 + 1035.58 p^{10} + 1799.39 p^{11} + 3104.2 p^{12} \\
&\quad+ 5322.18 p^{13} + 9075.83 p^{14} + 15403.6 p^{15} + 26033.4 p^{16} + 43833.5 p^{17} \\
&\quad+ 73555.2 p^{18} + 123053 p^{19} + 205290 p^{20} + 341620 p^{21} + 567161 p^{22} \\
&\quad+ 939693 p^{23} + 1.5537\cdot10^{6} p^{24} + 2.56158\cdot10^{6} p^{25} + \mathcal{O}(p^{26})
\end{align*}
where the recursion steps were done with a computer for an infinite line (or a cirlce where $n$ is assumed to be much larger than the largest power of $p$ considered).
Note: in the first line at the second term it uses that with probability $(3p-6p^2 + 3p^3)$ the state goes to $\framebox{$101$}$ and then the expected number of resamplings is $1+R_{101}$. Note that the actual term in the recursive formula should be
$$(3p-6p^2+3p^3)\cdot\left( \sum_{\xi\in\paths{101}} \mathbb{P}[\xi] \cdot \left( 1 + |\xi|\right) \right) = (3p-6p^2+3p^3)\left( p_\mathrm{tot} + R_{101} \right)$$
where $p_\mathrm{tot} := \sum_{\xi\in\paths{b}} \mathbb{P}[\xi]$. However, since the state space is finite (for finite $n$) and there is always a non-vanishing probability to go to $\mathbf{1}$, we know that $p_\mathrm{tot}=1$, i.e. the process terminates almost surely.
\newpage
\subsection{Weak cancellation proof}
Here we prove claim \ref{claim:weakcancel}, the weaker version of the claim. We require the following definition
\begin{definition}[Path independence] \label{def:independence}
We say two paths $\xi_i\in\paths{b_i}$ ($i=1,2$) of the Markov Chain are \emph{independent} if $\xi_1$ never resamples a site that was ever zero in $\xi_2$ and the other way around. It is allowed that $\xi_1$ resamples a $1$ to a $1$ that was also resampled from $1$ to $1$ by $\xi_2$ and vice versa. If the paths are not independent then we call the paths \emph{dependent}.
\end{definition}
\begin{definition}[Path independence - alternative] \label{def:independence2}
Equivalently, on the infinite line $\xi_1$ and $\xi_2$ are independent if there is a site `inbetween' them that was never zero in $\xi_1$ and never zero in $\xi_2$. On the cycle $\xi_1$ and $\xi_2$ are independent if there are \emph{two} sites inbetween them that are never zero.
\end{definition}
\begin{claim}[Sum of expectation values] \label{claim:expectationsum}
When $b=b_1\land b_2\in\{0,1\}^n$ is a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes with $k$ $1$s inbetween the groups, then we have $R_b(p) = R_{b_1}(p) + R_{b_2}(p) + \bigO{p^{k}}$ where $b_1$ and $b_2$ are the configurations where only one of the groups is present and the other group has been replaced by $1$s. To be precise, the sums agree up to and including order $p^{k-1}$.
\end{claim}
\textbf{Example}: For $b_1 = 0111111$ and $b_2 = 1111010$ we have $b=0111010$ and $k=3$. The claim says that the expected time to reach $\mathbf{1}$ from $b$ is the time to make the first group $1$ plus the time to make the second group $1$, as if they are independent. Simulation shows that
\begin{align*}
R_{b_1} &= 1 + 3p + 7p^2 + 14.67p^3 + 29p^4 + \mathcal{O}(p^5)\\
R_{b_2} &= 2 + 5p + 10.67p^2 + 21.11p^3+40.26p^4 + \mathcal{O}(p^5)\\
R_{b} &= 3 + 8p + 17.67p^2 + 34.78p^3+65.27p^4 + \mathcal{O}(p^5)\\
R_{b_1} + R_{b_2} &= 3 + 8p + 17.67p^2+35.78p^3 + 69.26p^4 +\mathcal{O}(p^5)
\end{align*}
and indeed the sums agree up to order $p^{k-1}=p^2$. When going up to order $p^{k}$ or higher, there will be terms where the groups interfere so they are no longer independent.
~
\begin{proof}
Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence} or \ref{def:independence2}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. Point $(i,j)$ in the grid indicates that $i$ steps of $\xi_1$ have been done and $j$ steps of $\xi_2$ have been done. At every point (except the top and right edges of the grid) one has to choose between doing a step of $\xi_1$ or a step of $\xi_2$. The number of zeroes in the current state determine the probabilities with which this happens (beside the probabilities associated to the two original paths already). The grid below shows that at a certain point one can choose to do a step of $\xi_1$ with probability $p_i$ or a step of $\xi_2$ with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. The weight of such a new path $\xi\in\paths{b_1\land b_2}$ is $p_\mathrm{grid}\cdot\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$ where $p_\mathrm{grid}$ is the weight of the path in the diagram. By induction one can show that the sum over the $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different terms $p_\mathrm{grid}$ is $1$.
\begin{center}
\includegraphics{diagram_paths.pdf}
\end{center}
Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by
\[
\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot(|\xi_1|+|\xi_2|) = \mathbb{P}[\xi_2]\cdot\mathbb{P}[\xi_1]\cdot|\xi_1| \;\; + \;\; \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot|\xi_2|.
\]
Ideally we would now like to sum this expression over all possible paths $\xi_1,\xi_2$ and use $p_\mathrm{tot}:=\sum_{\xi\in\paths{b_i}} \mathbb{P}[\xi] = 1$ (which also holds up to arbitrary order in $p$). The above expression would then become $R_{b_1} + R_{b_2}$. However, not all paths in the sum would satisfy the independence condition so it seems we can't do this. We now argue that it works up to order $p^{k-1}$.
For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits into two independent paths $\xi_1,\xi_2$ as above, \emph{or} it does not. In the latter case, when $\xi$ can not be split like that, we know $\mathbb{P}[\xi]$ contains a power $p^k$ or higher because there is a gap of size $k$ and the paths must have moved at least $k$ times `towards each other' (for example one path moves $m$ times to the right and the other path moves $k-m$ times to the left). So the total weight of such a combined path is at least order $p^k$. Therefore we have
\[
R_{b_1\land b_2} = \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2]|\xi_2| + \sum_{\mathclap{\xi\;\mathrm{dependent}}} \mathbb{P}[\xi]|\xi|.
\]
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
\[
\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
= \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
\]
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have
\begin{align*}
\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
&= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
&= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
&= R_{b_1} + \mathcal{O}(p^k)
\end{align*}
we can do the same with the second term and this proves the claim.
\end{proof}
~\\
\textbf{Proof of claim \ref{claim:weakcancel}}: We can assume $C$ consists of a group on the left with $l$ slots and a group on the right with $r$ slots (so $r+l=|C|$), with a gap of size $k=\mathrm{gap}(C)$ between these groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $f=(a,b)\in\{0,1'\}^{l+r}$. The initial probability of such a state $C(a,b)$ is $\rho_{C(a,b)} = (-1)^{|a|+|b|} p^{r+l}$ and by claim \ref{claim:expectationsum} we know $R_{C(a,b)} = R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k)$ where $C(a)$ indicates that only the left slots have been filled by $a$ and the other slots are filled with $1$s. The total contribution of these configurations is therefore
\begin{align*}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}
&= \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k) \right) \\
&=\;\;\; p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_{C(a)} \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\
&\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_{C(b)} \sum_{a\in\{0,1'\}^l} (-1)^{|a|}
+ \mathcal{O}(p^{r+l+k})\\
&= 0 + \mathcal{O}(p^{|C|+k})
\end{align*}
where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$.
\newpage
\section{Proving the strong cancellation claim}
It is useful to introduce some new notation. We will consider variations of the Markov Chains:
\begin{itemize}
\item $\P^{(n)}$ refers to the original process on the length-$n$ cycle.
\item $\P^{[a,b]}$ or $\P^{[n]}$ refers to a similar Markov Chain but on a finite chain ($[a,b]$ or $[1,n]$).
\end{itemize}
The process on the finite chain has the following modification at the boundary: if a boundary site is resampled, it can not resample one of its neighbors so it ignores it and only draws two new bits.
%Note that an \emph{event} is a subset of all possible paths of the Markov Chain.
\begin{definition}[Events conditioned on starting state] \label{def:conditionedevents}
For any state $b\in\{0,1\}^n$, define $\start{b}$ as the event that the starting state of the chain is the state $b$. For any event $A$, define
\begin{align*}
\P^{(n)}_b(A) &= \P^{(n)}(A \;|\; \start{b}) %\\
%R_{b,A} &= \mathbb{E}( \#resamples \;|\; A \; , \; \start{b})
\end{align*}
Furthermore, for $v\in[n]$ we define
\begin{align*}
\P^{[n]}_{b_v=1}(A) &= \P^{[n]}(A \;|\; v\text{ is initialized to }1),
\end{align*}
and we define similarly $\P^{[n]}_{b_v=b_w=1}(A)$ for $v,w\in[n]$.
\end{definition}
%Note that we have $\P^{(n)}(\start{b}) = (1-p)^{|b|}p^{n-|b|}$ by definition of our Markov Chain.
\begin{definition}[Vertex visiting event] \label{def:visitingResamplings}
Denote by $\mathrm{Z}^{(v)}$ the event that site $v$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(v)}$, i.e. the event that site $v$ does \emph{not} become zero before it terminates. Furthermore define $\mathrm{NZ}^{(v,w)} := \mathrm{NZ}^{(v)} \cap \mathrm{NZ}^{(w)}$, i.e. the event that \emph{both} $v$ and $w$ do not become zero before termination.
\end{definition}
%\begin{figure}
% \begin{center}
% \includegraphics{diagram_groups.pdf}
% \end{center}
% \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $v,w$.}
%\end{figure}
\begin{wrapfigure}{r}{0.25\textwidth}
\centering
\includegraphics{diagram_groups.pdf}
\caption{\label{fig:separatedgroups} Lemma \ref{lemma:eventindependence}.}
\end{wrapfigure}
The following lemma considers two vertices $v,w$ that are never ``crossed'' so that two halves of the cycle become independent.\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $v$, $w$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $v,w$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
\begin{align*}
\P^{(n)}_b(\mathrm{NZ}^{(v,w)}, A_1, A_2)
&=
\P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)}, A_1)
\; \cdot \;
\P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)}, A_2) \\
\P^{(n)}_b(A_1, A_2 \mid \mathrm{NZ}^{(v,w)})
&=
\P^{(n)}_{b_1}(A_1 \mid \mathrm{NZ}^{(v,w)})
\; \cdot \;
\P^{(n)}_{b_2}(A_2 \mid \mathrm{NZ}^{(v,w)}) .%\\
%R_{b,\mathrm{NZ}^{(v,w)},A_1,A_2}
%&=
%R_{b_1,\mathrm{NZ}^{(v,w)},A_1}
%\; + \;
%R_{b_2,\mathrm{NZ}^{(v,w)},A_2}
\end{align*}
%up to any order in $p$.
\end{lemma}
\begin{proof}
From any path $\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)}$ we can construct paths $\xi_1\in\start{b_1}\cap \mathrm{NZ}^{(v,w)}$ and $\xi_2\in\start{b_2}\cap\mathrm{NZ}^{(v,w)}$ as follows. Let us write the path $\xi$ as
$$\xi=\left( (\text{initialize }b), (z_1, s_1, r_1), (z_2, s_2, r_2), ..., (z_{|\xi|}, s_{|\xi|}, r_{|\xi|}) \right)$$
where $z_i\in[n]$ denotes the number of zeroes in the state before the $i$th step, $s_i\in [n]$ denotes the site that was resampled and $r_i\in \{0,1\}^3$ is the result of the three resampled bits. We have
\begin{align*}
\P^{(n)}_b[\xi] &= \P(\text{pick }s_1 | z_1) \P(r_1) \P(\text{pick }s_2 | z_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi|} | z_{|\xi|}) \P(r_{|\xi|}) \\
&= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi|}} \P(r_{|\xi|}) .
\end{align*}
To construct $\xi_1$ and $\xi_2$, start with $\xi_1 = \left( (\text{initialize }b_1) \right)$ and $\xi_2 = \left( (\text{initialize }b_2) \right)$. For each step $(z_i,s_i,r_i)$ in $\xi$ do the following: if $s_i$ is ``on the $b_1$ side of $v,w$'' then append $(z^{(1)}_i,s_i,r_i)$ to $\xi_1$ and if its ``on the $b_2$ side of $v,w$'' then append $(z^{(2)}_i,s_i,r_i)$ to $\xi_2$. Here $z^{(1)}_i$ is the number of zeroes that were on the $b_1$ side and $z^{(2)}_i$ is the number of zeroes on the $b_2$ side so we have $z_i = z^{(1)}_i + z^{(2)}_i$.
%Let the resulting paths be
%\begin{align*}
% \xi_1 &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_1|}}, s_{a_{|\xi_1|}}, r_{a_{|\xi_1|}}) \right) \\
% \xi_2 &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_1|}}, s_{b_{|\xi_1|}}, r_{b_{|\xi_1|}}) \right)
%\end{align*}
Now $\xi_1$ is a valid (terminating) path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $v,w$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.
Vice versa, any two paths $\xi_1\in\start{b_1}\cap \mathrm{NZ}^{(v,w)}$ and $\xi_2\in\start{b_2}\cap\mathrm{NZ}^{(v,w)}$ also induce a path $\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)}$ by simply interleaving the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_1$ and $\xi_2$.
For a fixed $\xi_1,\xi_2$ we will now show the following:
\begin{align*}
\sum_{\substack{\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)} \text{ s.t.}\\ \xi \text{ decomposes into } \xi_1,\xi_2 }} \P^{(n)}_b[\xi] &=
\sum_{\text{interleavings of }\xi_1,\xi_2} \P(\text{interleaving}) \cdot \P^{(n)}_{b_1}[\xi_1] \cdot \P^{(n)}_{b_2}[\xi_2] \\
&= \P^{(n)}_{b_1}[\xi_1] \cdot \P^{(n)}_{b_2}[\xi_2]
\end{align*}
where both sums are over $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ terms.
This is best explained by an example. Lets consider the following fixed $\xi_1,\xi_2$ and an example interleaving where we choose steps from $\xi_2,\xi_1,\xi_1,\xi_2,\cdots$:
\begin{align*}
\xi_1 &= \left( (z_1, s_1, r_1), (z_2, s_2, r_2), (z_3, s_3, r_3), (z_4, s_4, r_4),\cdots \right) \\
\xi_2 &= \left( (z_1', s_1', r_1'), (z_2', s_2', r_2'), (z_3', s_3', r_3'), (z_4', s_4', r_4'),\cdots \right) \\
\xi &= \left( (z_1 + z_1', s_1', r_1'), (z_1+z_2', s_1, r_1), (z_2+z_2', s_2, r_2), (z_3+z_2', s_2', r_2'), \cdots \right)
\end{align*}
The probability of $\xi_1$, started from $b_1$, is given by
\begin{align*}
\P^{(n)}_{b_1}[\xi_1] &= \P(\text{pick }s_1|z_1) \P(r_1) \P(\text{pick }s_2|z_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi_1|}|z_{|\xi_1|}) \P(r_{|\xi_1|}) \\
&= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi_1|}} \P(r_{|\xi_1|}) .
\end{align*}
and similar for $\xi_2$ but with primes.
The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $\xi$ in the example above.
\begin{center}
\includegraphics{diagram_paths2.pdf}
\end{center}
For the labels shown within the grid, define $p_{ij} = \frac{z_i}{z_i + z_j'}$.
The probability of $\xi$ is given by
\begin{align*}
\P^{(n)}_b[\xi] &= \frac{1}{z_1+z_1'} \P(r_1') \frac{1}{z_1+z_2'} \P(r_1) \frac{1}{z_2+z_2'} \P(r_2) \frac{1}{z_3+z_2'} \P(r_2') \cdots \tag{by definition}\\
&=
\frac{z_1'}{z_1+z_1'} \frac{1}{z_1'} \P(r_1') \;
\frac{z_1 }{z_1+z_2'} \frac{1}{z_1 } \P(r_1 ) \;
\frac{z_2 }{z_2+z_2'} \frac{1}{z_2 } \P(r_2 ) \;
\frac{z_2'}{z_3+z_2'} \frac{1}{z_2'} \P(r_2')
\cdots \tag{rewrite fractions}\\
&=
\frac{z_1'}{z_1+z_1'} \;
\frac{z_1 }{z_1+z_2'} \;
\frac{z_2 }{z_2+z_2'} \;
\frac{z_2'}{z_3+z_2'}
\cdots
\P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2] \tag{definition of $\P^{(n)}_{b_i}[\xi_i]$} \\
&= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \; \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2] \tag{definition of $p_{i,j}$} \\
&= \P(\text{path in grid}) \; \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2]
\end{align*}
In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
We obtain
\begin{align*}
\P^{(n)}_b(\mathrm{NZ}^{(v,w)},A_1,A_2)
&= \sum_{\substack{\xi\in\start{b} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_1\cap A_2}} \P^{(n)}_b(\xi) \\
&= \sum_{\substack{\xi_1\in\start{b_1} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_1}} \;\;
\sum_{\substack{\xi_2\in\start{b_1} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_2}}
\P^{(n)}_{b_1}(\xi_1)\cdot\P^{(n)}_{b_2}(\xi_2) \\
&=
\P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)},A_1)
\; \cdot \;
\P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)},A_2).
\end{align*}
The second equality follows directly from $\mathbb{P}(A\mid B)=\mathbb{P}(A,B)/\mathbb{P}(B)$ and setting $A_1,A_2$ to the always-true event.
%For the third equality, by the same reasoning we can decompose the paths
%\begin{align*}
% \P^{(n)}_b(\mathrm{NZ}^{(v,w)},A_1,A_2) R_{b,\mathrm{NZ}^{(v,w)},A_1,A_2}
% &\equiv \sum_{\substack{\xi\in\start{b}\\\xi \in \mathrm{NZ}^{(v,w)}\cap A_1\cap A_2}} \P^{(n)}[\xi] |\xi| \\
% &= \sum_{\substack{\xi_1\in\start{b_1}\\\xi_1 \in \mathrm{NZ}^{(v,w)}\cap A_1}}
% \sum_{\substack{\xi_2\in\start{b_2}\\\xi_2 \in \mathrm{NZ}^{(v,w)}\cap A_2}}
% \P^{(n)}[\xi_1]\P^{(n)}[\xi_2] (|\xi_1| + |\xi_2|) \\
% &=
% \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)},A_2) \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)},A_1) R_{b_1,\mathrm{NZ}^{(v,w)},A_1} \\
% &\quad +
% \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)},A_1) \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)},A_2) R_{b_2,\mathrm{NZ}^{(v,w)},A_2} .
%\end{align*}
%Dividing by $\P^{(n)}_b(\mathrm{NZ}_{(v,w)},A_1,A_2)$ and using the first equality gives the desired result.
\end{proof}
\begin{definition}[Starting state dependent probability distribution.]
Let $I\subset\mathbb{Z}$ be a finite set of vertices.
Let $b_I$ be the state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. Define $\P^{(n)}_I(A)=\P^{(n)}_{b_I}(A)$ which is defined in Definition \ref{def:conditionedevents}.
\end{definition}
\begin{lemma}[Conditional independence 2] \label{lemma:eventindependenceNew}
Let $v,w \in [n]$, and let $A$ be any event that depends only on the sites $[v,w]$ (meaning the initialization and resamples) and similarly $B$ an event that depends only on the sites $[w,v]$. (For example $\mathrm{Z}^{(s)}$ or ``$s$ has been resampled at least $k$ times'' for an $s$ on the correct interval). Then we have
\begin{align*}
\P^{(n)}(\mathrm{NZ}^{(v,w)}\cap A\cap B)
=
\P_{b_v=b_w=1}^{[v,w]}(\mathrm{NZ}^{(v,w)}\cap A)
\; \cdot \;
\P^{[w,v]}(\mathrm{NZ}^{(v,w)}\cap B),
\end{align*}
and similarly
\begin{align*}
\P^{[n]}(\mathrm{NZ}^{(v)}\cap A\cap B)
=
\P_{b_v=1}^{[v]}(\mathrm{NZ}^{(v)}\cap A)
\; \cdot \;
\P^{[v,n]}(\mathrm{NZ}^{(v)}\cap B)
\end{align*}
where there is no longer a condition on the starting state.
\end{lemma}
\begin{proof}
We start by relating the different Markov Chains.
If $b$ is a starting state where all the zeroes are inside an interval $[v,w]$ (not on the boundary) then we can switch between the cycle and the finite chain:
\begin{align*}
\P^{(n)}_{b} (\NZ{v,w} \cap A) = \P^{[v,w]}_b (\NZ{v,w}\cap A) .
\end{align*}
If vertex $v$ and $w$ never become zero, then the zeroes never get outside of the interval $[v,w]$ and we can ignore the entire circle and only focus on the process within $[v,w]$.
We can apply this to the result of Lemma \ref{lemma:eventindependence}, to get
\begin{align*}
\P^{(n)}_b(\mathrm{NZ}^{(v,w)} \cap A \cap B)
&=
\P^{[v,w]}_{b|_{[v,w]}}(\mathrm{NZ}^{(v,w)} \cap A)
\; \cdot \;
\P^{[v,w]}_{b|_{[w,v]}}(\mathrm{NZ}^{(v,w)} \cap B)
\end{align*}
Note that this also holds if $b$ has zeroes on the boundary (i.e. $b_v=0$ or $b_w=0$), because then both sides of the equations are zero.
For the starting state we have the expression $\P^{(n)}(\start{b}) = (1-p)^{|b|} p^{n-|b|}$ so it splits into a product
\begin{align*}
\P^{(n)}(\start{b}) = \P^{[v,w]}(\start{b|_{[v+1,w-1]}}) \;\; \P^{[w,v]}(\start{b|_{[w,v]}})
\end{align*}
where we have to be careful to count the boudary only once.
We now have
\begin{align*}
\P^{(n)}(\mathrm{NZ}^{(v,w)}\cap A\cap B)
&= \sum_{b\in\{0,1\}^n} \P^{(n)}_b(\mathrm{NZ}^{(v,w)}\cap A\cap B) \; \P^{(n)}(\start{b}) \\
&= \sum_{b\in\{0,1\}^n}
\P^{[v,w]}_{b|_{[v,w]}}(\mathrm{NZ}^{(v,w)}\cap A)
\P^{[v,w]}(\start{b|_{[v+1,w-1]}})
\\ &\qquad\qquad\quad\cdot
\P^{[w,v]}_{b|_{[w,v]}}(\mathrm{NZ}^{(v,w)}\cap B)
\P^{[w,v]}(\start{b|_{[w,v]}}) \\
&= \left( \sum_{\substack{b_1\in\{0,1\}^{[v,w]}\\ b_v=b_w=1}}
\P^{[v,w]}_{b_1}(\mathrm{NZ}^{(v,w)}\cap A)
\P^{[v,w]}(\start{b_1}) \right)
\\ &\qquad \cdot
\left( \sum_{b_2\in\{0,1\}^{[w,v]}}
\P^{[w,v]}_{b_2}(\mathrm{NZ}^{(v,w)}\cap B)
\P^{[w,v]}(\start{b_2}) \right) \\
&= \P^{[v,w]}_{b_v=b_w=1}(\mathrm{NZ}^{(v,w)}\cap A) \cdot
\P^{[w,v]}(\mathrm{NZ}^{(v,w)}\cap B)
\end{align*}
The second equality follows in a similar way.
\end{proof}
Some notation: let $P$ be an interval $[a,b]$. We say $P$ is a \emph{patch} when the $\Z{i}$ event holds for all $i \in [a,b]$ and $\NZ{a-1}$ and $\NZ{b+1}$ holds. We denote this event by $P\in\mathcal{P}$, so
\begin{align*}
P\in\mathcal{P} \equiv \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} .
\end{align*}
Note that we have the following partition of the event $\Z{v}$ for any vertex $v\in[n]$:
\begin{align*}
\Z{v} = \dot\bigcup_{P : v\in P} (P\in\mathcal{P})
\end{align*}
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
\begin{lemma}\label{lemma:probIndepNew}
$\forall n\in \mathbb{N}_+:\P^{[n]}(\Z{1})-\P^{[n+1]}(\Z{1}) = \bigO{p^{n}}$. (Should be true with $\bigO{p^{n+1}}$ as well.)
\end{lemma}
\begin{proof}
The proof uses induction on $n$. For $n=1$ the statement is easy, since $\P^{[1]}(\Z{1})=p$ and $\P^{[2]}(\Z{1})=p+p^2+\bigO{p^{3}}$.
Induction step: suppose we proved the claim for $n-1$, then
\begin{align*}
\P^{[n+1]}(\Z{1})
&=\sum_{k=1}^{n+1}\P^{[n+1]}([k]\in\mathcal{P}) \tag{the events are a partition}\\
&=\sum_{k=1}^{n-1}\P^{[n+1]}([k]\in\mathcal{P}) + \bigO{p^{n}}\tag*{$\left(\P^{[n+1]}([k]\in\mathcal{P})=O(p^{k})\right)$}\\
&=\sum_{k=1}^{n-1}\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})\cdot \P^{[n-k+1]}(\NZ{1})+ \bigO{p^{n}} \tag{by Claim~\ref{lemma:eventindependenceNew}}\\
&=\sum_{k=1}^{n-1}\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})\cdot \left(\P^{[n-k]}(\NZ{1})+\bigO{p^{n-k}}\right)+ \bigO{p^{n}} \tag{by induction} \\
&=\sum_{k=1}^{n-1}\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})\cdot \P^{[n-k]}(\NZ{1})+ \bigO{p^{n}} \tag*{$\left(\P^{[k+1]}_{b_{k+1}=1}([k]\in\mathcal{P})=\bigO{p^{k}}\right)$}\\
&=\sum_{k=1}^{n-1}\P^{[n]}([k]\in\mathcal{P})+ \bigO{p^{n}} \tag{by Claim~\ref{lemma:eventindependenceNew}}\\
&=\sum_{k=1}^{n}\P^{[n]}([k]\in\mathcal{P})+ \bigO{p^{n}} \tag*{$\left(\P^{[n]}([n]\in\mathcal{P})=\bigO{p^{n}}\right)$}\\
&=\P^{[n]}(\Z{1}) + \bigO{p^{n}}
\end{align*}
\end{proof}
\begin{corollary}\label{cor:probIndepNew}
$\P^{[n]}(\Z{1})-\P^{[m]}(\Z{1}) = \bigO{p^{\min(n,m)}}$. (Should be true with $\bigO{p^{\min(n,m)+1}}$ too.)
\end{corollary}
The intuition of the following lemma is simmilar to the previous. The events on the two sides should be independent unless an interaction chain is forming, implying that every vertex gets resampled to $0$ at least once.
\begin{lemma}\label{lemma:independenetSidesNew}
$$\P^{[k]}(\Z{1}\cap \Z{k})=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})+\bigO{p^{k}}=\left(\P^{[k]}(\Z{1})\right)^2+\bigO{p^{k}}.$$
\end{lemma}
Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying:
$$\P^{[k]}(\NZ{1}\cap \NZ{k})=\P^{[k]}(\NZ{1})\P^{[k]}(\NZ{k})+\bigO{p^{k}}.$$
\begin{proof}
We proceed by induction on $k$. For $k=1,2$ the statement is trivial.
Now observe that:
$$\P^{[k]}(\Z{1})=\sum_{P\text{ patch}\,:\,1\in P}\P^{[k]}(P\in\mathcal{P})$$
$$\P^{[k]}(\Z{k})=\sum_{P\text{ patch}\,:\,k\in P}\P^{[k]}(P\in\mathcal{P})$$
Suppose we proved the statement up to $k-1$, then we proceed using induction similarly to the above
\begin{align*}
&\P^{[k]}(\Z{1}\cap \Z{k})=\\
&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!\P^{[k]}([\ell],[r,k]\in\mathcal{P})
+\P^{[k]}([k]\in\mathcal{P})\\
&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!\P^{[k]}([\ell],[r,k]\in\mathcal{P})
+\bigO{p^{k}} \tag*{$\left(\P^{[k]}([k]\in\mathcal{P})=\bigO{p^{k}}\right)$}\\
&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
\P^{[\ell+1]}_{b_{\ell+1}=1}([\ell]\in\mathcal{P})
\P^{[\ell+1,r-1]}(\NZ{\ell+1}\cap \NZ{r-1})
\P^{[r-1,k]}_{b_{r-1}=1}([r,k]\in\mathcal{P})
+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
\P^{[\ell+1]}_{b_{\ell+1}=1}([\ell]\in\mathcal{P})
\left(\P^{[\ell+1,r-1]}(\NZ{\ell+1})
\P^{[\ell+1,r-1]}(\NZ{r-1})\right)
\P^{[r-1,k]}_{b_{r-1}=1}([r,k]\in\mathcal{P})
+\bigO{p^{k}} \tag{by induction}\\
&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
\P^{[\ell+1]}_{b_{\ell+1}=1}([\ell]\in\mathcal{P})
\left(\P^{[\ell+1,k]}(\NZ{\ell+1})
\P^{[1,r-1]}_{b_{r-1}=1}(\NZ{r-1})\right)
\P^{[r-1,k]}([r,k]\in\mathcal{P})
+\bigO{p^{k}} \tag{by Corrolary~\ref{cor:probIndepNew}}\\
&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
\P^{[k]}([\ell]\in\mathcal{P})
\P^{[k]}([r,k]\in\mathcal{P})
+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&=\left(\sum_{\ell\in [k]}\P^{[k]}([\ell]\in\mathcal{P})\right)
\left(\sum_{r\in [k]}\P^{[k]}([r,k]\in\mathcal{P})\right)
+\bigO{p^{k}} \tag*{$\left(\P^{[k]}([\ell]\in\mathcal{P})=\bigO{p^{\ell}}\right)$}\\
&=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})
+\bigO{p^{k}}.
\end{align*}
\end{proof}
Again the intuition of the final theorem is simmilar to the previous lemmas. A site can only realise the length of the cycle after an interaction chain was formed around the cycle, implying that every vertex was resampled to $0$ at least once.
\begin{theorem}
$R^{(n)}-R^{(m)}=\bigO{p^{\min(n,m)}}$.
\end{theorem}
\begin{proof}
Let $N\geq \max(2n,2m)$, then
\vskip-3mm
\begin{align*}
R^{(n)}
&= \E^{(n)}(\Res{0}) \tag{by translation invariance}\\
&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{0}\!\geq\! k) \\
&= \sum_{k=1}^{\infty}\sum_{\underset{v+w\leq n+1}{v,w\in [n]}}\P^{(n)}(\Res{0}\!\geq\! k\,\&\, \underset{P_{v,w}:=}{\underbrace{[-v\!+\!1,w\!-\!1]}}\in\mathcal{P}) \tag{partition}\\[-1mm]
&= \sum_{k=1}^{\infty}\sum_{\underset{v+w\leq n}{v,w\in [n]}}\P^{(n)}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) +\bigO{p^{n}}\\[-1mm]
&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) \P^{[w,n-v]}(\NZ{w,n-v}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) \left(\left(\P^{[w,n-v]}(\NZ{w})\right)^{\!\!2}\!+\!\bigO{p^{n-v-w+1}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) \left(\P^{[-N,-v]}(\NZ{-v})\P^{[w,N]}(\NZ{w})\!+\!\bigO{p^{n-v-w+1}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) \P^{[-N,-v]}(\NZ{-v})\P^{[w,N]}(\NZ{w}) +\bigO{p^{n}} \tag{$|P_{v,w}|=v+w-1$}\\
&= \sum_{k=1}^{\infty}\sum_{\underset{v+w\leq n}{v,w\in [n]}}\P^{[-N,N]}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\[-1mm]
&= \sum_{k=1}^{\infty}\sum_{\underset{|P|<n}{P\text{ patch}:0\in P}}\P^{[-N,N]}(\Res{0}\!\geq\! k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \\[-1mm]
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:0\in P}\P^{[-N,N]}(\Res{0}\!\geq\! k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \\
&= \E^{[-N,N]}(\Res{0})+\bigO{p^{n}}.\\[-3mm]
\end{align*}
\noindent Repeating the same argument with $m$ and comparing the results completes the proof.
\end{proof}
\begin{comment}
Let $N\geq \max(2n,2m)$, then
\begin{align*}
R^{(n)}
&= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\
&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\
%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\
%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) +\bigO{p^{n}} \\
%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \P^{[\overline{P}]}(\NZ{\partial P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[|\overline{P}|]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[N]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNew}}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
&= \E^{[-N,N]}(\Res{1})+\bigO{p^{n}}.
\end{align*}
\end{comment}
Old:
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
\begin{lemma}\label{lemma:probIndep}
Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. These definitions are illustraded in Figure \ref{fig:lemmaillustration}.
Then $\P^\infty_{I}(\Z{0})-\P^\infty_{I'}(\Z{0}) = O(p^{I_{\max}-|I'|})$.
\end{lemma}
\begin{proof}
\begin{figure}
\begin{center}
\includegraphics{diagram_proborders.pdf}
\end{center}
\caption{\label{fig:lemmaillustration} Illustration of setup of Lemma \ref{lemma:probIndep}.}
\end{figure}
The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples vertex $0$ to zero must produce at least $I_{\max}$ zeroes in-between.
Induction step: For an event $A$ and $k>0$ let us denote $A_k = A\cap\left(\cap_{j=0}^{k-1} \mathrm{Z}^{(j)}\right)\cap \NZ{(k)}$, i.e. $A_k$ is the event $A$ \emph{and} ``Each vertex in $0,1,2,\ldots, k-1$ becomes $0$ at some point before termination (either by resampling or initialisation), but vertex $k$ does not''. Observe that these events form a partition, so $\Z{(0)}=\dot{\bigcup}_{k=1}^{\infty}\Z{(0)}_k$.
Let $I_{<k}:=I\cap[1,k-1]$ and similarly $I_{>k}:=I\setminus[1,k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ (note that $I_{><} = \gaps{I}$ as shown in Figure \ref{fig:diametergap}). Suppose we have proven the claim up to $|I|-1$, then the induction step can be shown by
\begin{align*}
\P^\infty_{I}(\Z{(0)})
&=\sum_{k=1}^{\infty}\P^\infty(\Z{(0)}_k) \tag{the events are a partition}\\
&=\sum_{k\in \mathbb{N}\setminus I}\P^\infty(\Z{(0)}_k) \tag{$\mathbb{\P^\infty}(A_k)=0$ for $k\in I$}\\
&=\sum_{k\in\mathbb{N}\setminus I}\P^\infty_{I_{<k}}(\Z{(0)}_k)\cdot \P^\infty_{I_{>k}}(\NZ{(k)}) \tag{by Claim~\ref{claim:eventindependence}}\\
&=\sum_{k\in I_{><}}\P^\infty_{I_{<k}}(\Z{(0)}_k)\cdot \P^\infty_{I_{>k}}(\NZ{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|})
\tag{$k<I_{\min}\Rightarrow \P^\infty_{I_{<k}}(\Z{(0)}_k)=0$}\\
&=\sum_{k\in I_{><}}\P^\infty_{I'_{<k}}(\Z{(0)}_k)\cdot \P^\infty_{I_{>k}}(\NZ{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|})
\tag{$k< I_{\max}\Rightarrow I_{<k}=I'_{<k}$}\\
&=\sum_{k\in I_{><}}\P^\infty_{I'_{<k}}(\Z{(0)}_k)\cdot
\left(\P^\infty_{I'_{>k}}(\NZ{(k)})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{by induction, since for $k>I_{\min}$ we have $|I_{<k}|<|I|$}\\
&=\sum_{k\in I_{><}}\P^\infty_{I'_{<k}}(\Z{(0)}_k)\cdot
\P^\infty_{I'_{>k}}(\NZ{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})
\tag{as $\P^\infty_{I'_{<k}}(\Z{(0)}_k)=\mathcal{O}(p^{k-|I'_{<k}|})$}\\
&=\sum_{k\in\mathbb{N}\setminus I}\P^\infty_{I'_{<k}}(\Z{(0)}_k)\cdot
\P^\infty_{I'_{>k}}(\NZ{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\
&=\sum_{k\in\mathbb{N}\setminus I'}\P^\infty_{I'_{<k}}(\Z{(0)}_k)\cdot
\P^\infty_{I'_{>k}}(\NZ{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{$k=I_{\max}\Rightarrow \P^\infty_{I'_{<k}}(\Z{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
&=\P^\infty_{I'}(\Z{(0)}) +\mathcal{O}(p^{I_{\max}-|I'|}) \tag{analogously to the beginning}
\end{align*}
\end{proof}
\begin{corollary}\label{cor:probIndep}
Suppose $I,J\subset\mathbb{N}_+$ are finite sets of vertices, and let $m=\min(\Delta(I,J))$.
Then $\P^\infty_{I}(\Z{0})-\P^\infty_{J}(\Z{0}) = O(p^{|[m]\cap I\cap J|})$.
\end{corollary}
%The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling.
%Also this claim finally ``sees'' how many empty places are between slots. These properties make it possible to use this lemma to prove the sought linear bound. We show it for the infinite chain, but with a little care it should also translate to the cycle.
\begin{definition}[Connected patches]
Let $\mathcal{P}\subset 2^{\mathbb{Z}}$ be a finite system of finite subsets of $\mathbb{Z}$. We say that the patch set of a resample sequence is $\mathcal{P}$,
if the connected components of the vertices that have ever become $0$ are exactly the elements of $\mathcal{P}$. We denote by $A^{(\mathcal{P})}$ the event that the set of patches is $\mathcal{P}$. For a patch $P$ let $A^{(P)}=\bigcup_{\mathcal{P}:P\in \mathcal{P}}A^{(\mathcal{P})}$ denote the event that one of the patches is equal to $P$ but there can be other patches as well.
As a shorthand we are going to use the notation $P\in \mathcal{P}$ for the event $A^{(P)}$.
\end{definition}
\begin{definition}[Conditional expectations]
Let $S\subset\mathbb{Z}$ be a finite slot configuration, and for $f\in\{0,1'\}^{|S|}$ let $I:=S(f)$ be the set of vertices filled with a particle (i.e. $1'$).
Then we define
$$R_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}],$$
and similarly for a patch $P$ we define
$$R^{(P)}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(P)}].$$
\end{definition}
\begin{lemma}Suppose $I\subseteq [k]$, then on the infinite chain
$$\P^\infty_I(\Z{1}\cap \Z{k})=\P^\infty_I(\Z{1})\P^\infty_I(\Z{k})+\mathcal{O}(p^{k-|I|}).$$
\end{lemma}
Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying:
$$\P^\infty_I(\NZ{1}\cap \NZ{k})=\P^\infty_I(\NZ{1})\P^\infty_I(\NZ{k})+\mathcal{O}(p^{k-|I|}).$$
\begin{proof}
We proceed by induction on $|I|$. For $|I|=0$ the statement is trivial.
Now observe that:
$$\P^\infty_I(\Z{1})=\sum_{P\text{ patch}\,:\,1\in P}\P^\infty_I(P\in\mathcal{P})$$
$$\P^\infty_I(\Z{k})=\sum_{P\text{ patch}\,:\,k\in P}\P^\infty_I(P\in\mathcal{P})$$
Suppose we proved the statement for all $\ell< |I|$, then we proceed using induction similarly to the above (let us use the notation $>I<:=I\cap \overline{P_l}\cap \overline{P_r}$ for simplicity)
\begin{align*}
&\P^\infty_I(\Z{1}\cap \Z{k})=\\
&=\sum_{P_l\neq P_r\text{ patches}\,:\,1\in P_l,k\in P_r}
\P^\infty_I(P_l,P_r\in\mathcal{P})
+\sum_{P\text{ patch}\,:\,1,k\in P}\P^\infty_I(P\in\mathcal{P})\\
&=\sum_{P_l\neq P_r\text{ patches}\,:\,1\in P_l,k\in P_r}
\P^\infty_I(P_l,P_r\in\mathcal{P})
+\mathcal{O}(p^{k-|I|})\\
&\overset{Lemma~\ref{claim:eventindependence}}{=}\sum_{P_l\neq P_r\text{ patches}\,:\,1\in P_l,k\in P_r}
\P^\infty_{I\cap P_l}(P_l\in\mathcal{P})
\P^\infty_{>I<}(\NZ{P_l^{\max}+1}\cap \NZ{P_r^{\min}-1})
\P^\infty_{I\cap P_r}(P_r\in\mathcal{P})
+\mathcal{O}(p^{k-|I|})\\
&\overset{\text{induction}}{=}\sum_{P_l\neq P_r\text{ patches}\,:\,1\in P_l,k\in P_r}
\P^\infty_{I\cap P_l}(P_l\in\mathcal{P})
\P^\infty_{> I <}(\NZ{P_l^{\max}+1})\P^\infty_{> I <}(\NZ{P_r^{\min}-1})
\P^\infty_{I\cap P_r}(P_r\in\mathcal{P})
+\mathcal{O}(p^{k-|I|})\\
&\overset{Corrolary~\ref{cor:probIndep}}{=}\sum_{P_l\neq P_r\text{ patches}\,:\,1\in P_l,k\in P_r}
\P^\infty_{I\cap P_l}(P_l\in\mathcal{P})
\P^\infty_{I\setminus P_l}(\NZ{P_l^{\max}+1})\P^\infty_{I\setminus P_r}(\NZ{P_r^{\min}-1})
\P^\infty_{I\cap P_r}(P_r\in\mathcal{P})
+\mathcal{O}(p^{k-|I|})\\
&\overset{Lemma~\ref{claim:eventindependence}}{=}\sum_{P_l\neq P_r\text{ patches}\,:\,1\in P_l,k\in P_r}
\P^\infty_{I}(P_l\in\mathcal{P})
\P^\infty_{I}(P_r\in\mathcal{P})
+\mathcal{O}(p^{k-|I|})\\
&=\left(\sum_{P_l\text{ patch}\,:\,1\in P_l}\P^\infty_{I}(P_l\in\mathcal{P})\right)
\left(\sum_{P_r\text{ patch}\,:\,k\in P_r}\P^\infty_{I}(P_r\in\mathcal{P})\right)
+\mathcal{O}(p^{k-|I|})\\
&=\P^\infty_I(\Z{1})\P^\infty_I(\Z{k})
+\mathcal{O}(p^{k-|I|}).
\end{align*}
\end{proof}
\begin{corollary}\label{cor:independenetSides}
Let $k>0$ and $d:=\lfloor\frac{k}{2}\rfloor$, then
\begin{align*}
\sum_{S\subseteq [k]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1}\cap \NZ{k})
=\left(\sum_{\underset{|S|<\infty}{S\subseteq \mathbb{N}_+}}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\right)^{\!\!\!2}
+\mathcal{O}(p^{d}).
\end{align*}
\end{corollary}
(Question: is the above is true with $d=k$?)
\begin{proof}
Let $[-d]:=\{k-d+1,\ldots, k\}$ and $[\pm d]:=[d]\cup [-d]$. By the above statement we know that
\begin{align}\label{eq:intervalIndep}
\sum_{S\subseteq [k]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1}\cap \NZ{k})
=\sum_{S\subseteq [k]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\P^\infty_{S(f)}(\NZ{k})+\bigO{p^{k}}.
\end{align}
Now suppose $s\in S\subseteq[k]$ such that $s\notin [\pm d]$, then
\begin{align*}
&\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\P^\infty_{S(f)}(\NZ{k})+\bigO{p^{k}}\\
&=\sum_{f_{\overline{s}}\in\{0,1'\}^{|S|-1}}\rho_{S\setminus\{s\}(f_{\overline{s}})} \left(p\P^\infty_{S(f_{\overline{s}},f_s=0)}(\NZ{1})\P^\infty_{S(f_{\overline{s}},f_s=0)}(\NZ{k})-p\P^\infty_{S(f_{\overline{s}},f_s=1)}(\NZ{1})\P^\infty_{S(f_{\overline{s}},f_s=1)}(\NZ{k})\right)\\
&=\mathcal{O}(p^{d}). \tag{by Corollary~\ref{cor:probIndep}}
\end{align*}
Therefore we can see that
\begin{align*}
\eqref{eq:intervalIndep}&=\sum_{S\subseteq [\pm d]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\P^\infty_{S(f)}(\NZ{k})+\mathcal{O}(p^{d})\\
&=\sum_{S\subseteq [d]}\sum_{f\in\{0,1'\}^{|S|}}\sum_{S'\subseteq [d]}\sum_{f'\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\rho_{S'(f')}\P^\infty_{S'(f')}(\NZ{k})+\mathcal{O}(p^{d}) \tag{Corollary \ref{cor:probIndep}}\\
&=\left(\sum_{S\subseteq [d]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\right)
\left(\sum_{S'\subseteq [-d]}\sum_{f'\in\{0,1'\}^{|S'|}}\rho_{S'(f')} \P^\infty_{S'(f')}(\NZ{k})\right)
+\mathcal{O}(p^{d})\\
&=\left(\sum_{S\subseteq [d]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\right)^{\!\!2}
+\mathcal{O}(p^{d})\tag{by symmetry}\\
&=\left(\sum_{\underset{|S|<\infty}{S\subseteq \mathbb{N}_+}}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \P^\infty_{S(f)}(\NZ{1})\right)^{\!\!2}
+\mathcal{O}(p^{d}).\tag{Corollary \ref{cor:probIndep}}
\end{align*}
\end{proof}
\begin{remark}\label{rem:cycleContained}
For all $n\geq k$ and $I\subseteq [k]$ we have that
$$\P^n_I(\NZ{1}\cap \NZ{k})=\P^\infty_I(\NZ{1}\cap \NZ{k}).$$
\end{remark}
\begin{theorem}
Suppose $n,m\geq 2k$, then $R^{(n)}-R^{(m)}=\bigO{p^{k}}$.
\end{theorem}
\begin{proof}
\begin{align*}
R^{(n)} &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} R_{S(f)}\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \sum_{v\in[n]}\sum_{t=1}^{\infty}\P_{S(f)}(v \text{ is resampled in the }t\text{-th step})\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} \sum_{v\in[n]}\sum_{t=1}^{\infty}\sum_{P\text{ patch}}\P_{S(f)}(v \text{ is resampled in the }t\text{-th step and }P\text{ is a patch})\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} \sum_{P\text{ patch}} R^{(P)}_{S(f)}\mathbb{P}_{S(f)}(A^{(P)}) \tag{by definition}\\
&= \sum_{\underset{P_{\max}\leq k}{\underset{P_{\min}=1}{P\text{ patch}}}}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} R^{(P)}_{S(f)}\mathbb{P}_{S(f)}(A^{(P)}) + \bigO{p^{k}} \tag{by translation symmetry}\\
&= \sum_{\underset{P_{\max}\leq k}{\underset{P_{\min}=1}{P\text{ patch}}}}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)\cap P}(A^{(P)})\mathbb{P}_{S(f)\cap \overline{P}}(\NZ{P_{\min}-1}\cap\NZ{P_{\max}+1})+ \bigO{p^{k}} \tag{by Lemma~\ref{claim:eventindependence}}\\
&= \sum_{\underset{P_{\max}\leq k}{\underset{P_{\min}=1}{P\text{ patch}}}}\sum_{S\subseteq P}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} R^{(P)}_{S(f)}\P_{S(f)}(A^{(P)})
\sum_{S'\subseteq \overline{P}}\sum_{f'\in\{0,1'\}^{|S'|}}\P_{S'(f')}(\NZ{P_{\min}-1}\cap\NZ{P_{\max}+1})+ \bigO{p^{k}} \\
&= \sum_{\underset{P_{\max}\leq k}{\underset{P_{\min}=1}{P\text{ patch}}}}\sum_{S\subseteq P}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} R^{(P)}_{S(f)}\P_{S(f)}(A^{(P)})\left(\sum_{\underset{|S'|<\infty}{S'\subseteq \mathbb{N}_+}}\sum_{f'\in\{0,1'\}^{|S'|}}\rho_{S'(f')} \P^\infty_{S'(f')}(\NZ{1})\right)^{\!\!2}
+\bigO{p^{k}}.\tag{By Corollary \ref{cor:independenetSides} with $k=|\overline{P}|$ observing $p^{k}=\mathcal{O}(p^{|P|+\lfloor\frac{|\overline{P}|}{2}\rfloor})$.}
\end{align*}
Since the above expression is independent of $n$ the statement follows.
\end{proof}
%Final observation: Suppose $S={a,b}$
% \begin{align*}
% &\sum_{f_{\overline{P}}\in\{0,1'\}^{2}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\NZ{(P_{\min}-1)}\cap \NZ{(P_{\max}+1)}) \\
% &= \sum_{f_{\overline{P}}\in\{0,1'\}^{2}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\NZ{(P_{\min}-1)}) \mathbb{P}_{S(f_{\overline{P}})}(\NZ{(P_{\max}+1)}) +\mathcal{O}(p^{|\overline{P}|-|S|})\\
% &= \sum_{f_{\overline{P}}\in\{0,1'\}^{2}} \rho_{a_f}\mathbb{P}_{S(f_{\overline{P}})}(\NZ{(P_{\min}-1)}) \rho_{b_f}\mathbb{P}_{S(f_{\overline{P}})}(\NZ{(P_{\max}+1)}) +\mathcal{O}(p^{|\overline{P}|-|S|})\\
% \end{align*}
~
Questions:
\begin{itemize}
\item Can we generalise the proof to other translationally invariant spaces, like the torus?
\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
\end{itemize}
%I think the same arguments would translate to the torus and other translationally invariant spaces, so we could go higher dimensional as Mario suggested. Then I think one would need to replace $|S_{><}|$ by the minimal number $k$ such that there is a $C$ set for which $S\cup C$ is connected. I am not entirely sure how to generalise Lemma~\ref{lemma:probIndep} though, which has key importance in the present proof.
Here, I (Tom) tried to set do the same Lemma but for the cycle instead of the infinite chain.
\begin{lemma}[Startingstate dependence] \label{lemma:probIndepCycle}
Let $d(a,b)$ be the distance between $a,b\in[n]$ on the cycle, so $d(a,b)=\min(|a-b| , n-|a-b|)$. Let $\dist{s}(a,b)$ be the distance between $a,b$ when taking the path that does \emph{not} cross $s$. Let $I\subseteq [n]$ be a non-empty set of vertices. Let $i_* \in I$ and define $I' = I \setminus \{i_*\}$. Let $j,s\notin I$, with $j\neq s$ be any vertices not in $I$.
Then
\begin{align*}
\P_{I}(\Z{j}) &= \P_{I'}(\Z{j}) + \mathcal{O}(p^{d(i_*,j) + 1 - |I|}) \\
\P_{I}(\Z{j},\NZ{s}) &= \P_{I'}(\Z{j},\NZ{s}) + \mathcal{O}(p^{\min\left( \dist{s}(i_*,j), \dist{j}(i_*,s) \right) + 1 - |I|}) .
\end{align*}
\end{lemma}
\begin{proof}
Without loss of generality, we can assume that $j=0$ and $0 < i_* < s < n$ (because we can shift $j$ to $0$ and switch the direction to get the correct ordering). Therefore, we have to prove:
\begin{align*}
\P_{I}(\Z{0}) &= \P_{I'}(\Z{0}) + \mathcal{O}(p^{d(i_*,0) + 1 - |I|}) \\
\P_{I}(\Z{0},\NZ{s}) &= \P_{I'}(\Z{0},\NZ{s}) + \mathcal{O}(p^{\min\left( i_*, s-i_* \right) + 1 - |I|}) .
\end{align*}
We will prove both statements inductively on $|I|$. For $|I|=1$ we have $I=\{i_*\}$ and $I'=\emptyset$, so $\P_{I'}(\Z{0})=0$ and
\begin{align*}
\P_{I}(\Z{0}) &= \mathcal{O}(p^{d(i_*,0)}) \\
\P_{I}(\Z{0},\NZ{s}) &= \mathcal{O}(p^{i_*}) = \mathcal{O}(p^{\min\left( i_*, s-i_* \right)})
\end{align*}
simply because a chain of zeroes has to be formed between $i_*$ and $0$, and in the second case this chain can not go through $s$ so the shortest path has length $i_*$. Now assume both statements hold up to $|I|-1$, then we prove them both for sets of size $|I|$.
When we refer to an interval $[a,b]$ on the cycle we could be referring to two possible intervals because of the periodicity of the cycle. Define $[a,b]_j$ as the interval with vertex $j$ on the \emph{inside}. Furthermore by $-a$ we mean the vertex $n-a$, as one would expect modulo $n$.
We will now consider intervals around vertex 0.
For $l,r\geq 1$ and $l+r\leq n$, define the event ``zeroes patch'' $\mathrm{ZP}^{[-l,r]_0}$ as the event of getting zeroes inside the interval $[-l,r]_0$ but not on the boundary, i.e.
$$\mathrm{ZP}^{[-l,r]_0} = \NZ{-l} \cap \Z{-l+1} \cap \cdots \cap \Z{0} \cap \cdots \cap \Z{r-1} \cap \NZ{r}$$
Note that there are $r+l-1$ `zeroes' in this event, so $\P_{J}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{r+l-1-|J|})$ for $J\subseteq[-l,r]_0$ is a lower bound on the order of $p$.\\
Claim:
\begin{align*}
\P_{I}(\mathrm{ZP}^{[-l,r]_0}) &= \P_{I'}(\mathrm{ZP}^{[-l,r]_0})
+ \mathcal{O}(p^{d(i_*,0)+1-|I|})
\end{align*}
If $r\geq i_*$ or $l\geq n-i_*$ then $\P_{I}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$ and also $\P_{I'}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$ so then the claim holds.
If $-l\in I$ or $r\in I$ (and $-l,r$ are both not $i_*$ because of the previous point) then the probability of $\mathrm{ZP}^{[-l,r]_0}$ is zero for both $I$ and $I'$ so the claim holds.
If $[-l,r]_0$ has no overlap with $I$ then both sides are also zero so it also holds. We are left with the case where: $-l,r,\notin I$ and $[-l,r]_0 \cap I \neq \emptyset$ and $i_*\notin[-l,r]_0$.
The following diagram illustrates the situation
\begin{center}
\includegraphics{diagram_circle_lemma.pdf}
\end{center}
Note that by Claim~\ref{claim:eventindependence} we have
\begin{align*}
\P_{I}(\mathrm{ZP}^{[-l,r]_0}) = \P_{I \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0}) \;\cdot\; \P_{I\setminus [-l,r]_0}(\NZ{-l},\NZ{r})
\end{align*}
We have $i_*\in I \setminus[-l,r]_0$, and $I\cap[-l,r]_0 = I' \cap [-l,r]_0$. Define $J=I\setminus[-l,r]_0$ and $J'=I'\setminus[-l,r]_0$. We have $|J|<|I|$ so we can apply the induction hypothesis to $J$:
\begin{align*}
\P_{J}(\NZ{-l},\NZ{r})
&=
1
- \P_{J}(\Z{-l},\NZ{r})
- \P_{J}(\Z{r})
\tag{partition of all events} \\
&=
1
- \P_{J'}(\Z{-l},\NZ{r})
- \P_{J'}(\Z{r}) \\
&\quad + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l), \dist{-l}(i_*,r) \right) +1-|J|})
+ \mathcal{O}(p^{d(i_*,r)+1-|J|}) \\
&=
\P_{J'}(\NZ{-l},\NZ{b})
+ \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+1-|J|})
\end{align*}
Note that the event $\mathrm{ZP}^{[-l,r]_0}$ contains $l+r-1$ zeroes, so $\P_{I \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{l+r-1-|I\cap[-l,r]_0|})$. This means
\begin{align*}
\P_{I}(\mathrm{ZP}^{[-l,r]_0})
&= \P_{I' \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0})
\left( \P_{I' \setminus [-l,r]_0}(\NZ{a},\NZ{b}) + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+1-|J|}) \right) \\
&= \P_{I' \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0}) \;\cdot\; \P_{I'\setminus [-l,r]_0}(\NZ{a},\NZ{b}) \\
&\qquad + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+1-|J| + l+r-1-|I\cap[-l,r]_0|}) \\
&= \P_{I'}(\mathrm{ZP}^{[-l,r]_0})
+ \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+l+r-|I|})
\end{align*}
Where we used Claim~\ref{claim:eventindependence} again.
Case separation shows that
$$\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right) + l +r \geq d(i_*,0) + 1$$
for $l,r\geq 1$ which proves the claim.
The first equality that we have to prove now follows from the fact that the ``zeroes patch'' events are a partition of $\Z{0}$:
\begin{align*}
\P_{I}(\Z{0})
&=\sum_{\substack{l,r\geq 1\\l+r\leq n}}
\P_I(\mathrm{ZP}^{[-l,r]_0})
\tag{the events are a partition of $\Z{0}$}\\
&=\sum_{\substack{l,r\geq 1\\l+r\leq n}}
\P_{I'}(\mathrm{ZP}^{[-l,r]_0})
+ \mathcal{O}(p^{d(i_*,0)+1-|I|})
\tag{by claim} \\
&= \P_{I'}(\Z{0}) + \mathcal{O}(p^{d(i_*,0)+1-|I|})
\end{align*}
Similarly, we have
\begin{align*}
\P_{I}(\Z{0} , \NZ{s})
&=\sum_{l=1}^{n-s}\sum_{r=1}^{s}
\P_{I}(\mathrm{ZP}^{[-l,r]_0},\NZ{s})
\tag{partition of $\Z{0}$}\\
&=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
\P_{I}(\mathrm{ZP}^{[-l,r]_0},\NZ{s})
+\mathcal{O}(p^{i_*+1-|I|}) \\
&=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
\P_{I\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
\P_{I\setminus [s,r]_0}(\NZ{r},\NZ{s})
+\mathcal{O}(p^{i_*+1-|I|})
\tag{Claim~\ref{claim:eventindependence}}\\
&=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
\P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
\P_{I\setminus [s,r]_0}(\NZ{r},\NZ{s})
+\mathcal{O}(p^{i_*+1-|I|})
\tag{$i_*\in I \setminus[s,r]_0$}\\
&=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
\P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
\P_{I'\setminus [s,r]_0}(\NZ{r},\NZ{s}) \\
&\qquad +\mathcal{O}(p^{\min\left( \dist{r}(i_*,s) , d(i_*,r)\right)+l+r-|I|})
+\mathcal{O}(p^{i_*+1-|I|})
\tag{same argument as before}\\
&=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
\P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
\P_{I'\setminus [s,r]_0}(\NZ{r},\NZ{s}) \\
&\qquad
+\mathcal{O}(p^{\min\left( i_* , s-i_* \right) +1-|I|})
\tag{case separation}\\
&= \P_{I'}(\Z{0} , \NZ{s})
+\mathcal{O}(p^{\min\left( i_* , s-i_* \right) +1-|I|})
\end{align*}
This finishes the proof.
\end{proof}
Similarly to Mario's proof I use the observation that
\begin{align*}
R^{(n)} &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} R_{S(f)}\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)}
\sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{(\mathcal{P})}) R^{(\mathcal{P})}_{S(f)} \\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)}
\sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{\mathcal{P}}) \sum_{P\in\mathcal{P}} R^{(P,\mathcal{P})}_{S(f)}\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)}
\sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{\mathcal{P}}) \sum_{P\in\mathcal{P}} R^{(P)}_{S(f)\cap P}\tag{by Claim~\ref{claim:eventindependence}}\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)}
\sum_{P\text{ patch}} R^{(P)}_{S(f)\cap P}\sum_{\mathcal{P}:P\in\mathcal{P}}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{(P)}) \tag{by definition}\\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
\rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)\cap P}(A^{(P)})\mathbb{P}_{S(f)\cap \overline{P}}(\overline{\Z{(P_{\min}-1)}}\cap\overline{\Z{(P_{\max}+1)}}) \tag{remember Definition~\ref{def:visitingResamplings} and use Claim~\ref{claim:eventindependence}}\\
&= \frac{1}{n}\sum_{S\subseteq [n]} \sum_{P\text{ patch}} \sum_{f_P\in\{0,1'\}^{|S\cap P|}}
\rho_{S(f_P)} R^{(P)}_{S(f_P)} \mathbb{P}_{S(f_P)}(A^{(P)})
\sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\overline{\Z{(P_{\min}-1)}}\cap\overline{\Z{(P_{\max}+1)}}) \\
&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f_P\in\{0,1'\}^{|S\cap P|}}
\rho_{S(f_P)}
\sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathcal{O}(p^{|S_{><}|}) \tag{see below} \\
&= \frac{1}{n}\sum_{S\subseteq [n]}\mathcal{O}(p^{|S|+|S_{><}|}).
\end{align*}
\begin{figure}
\begin{center}
\includegraphics{diagram_patches.pdf}
\end{center}
\caption{\label{fig:patches} Illustration of last steps of the proof.}
\end{figure}
The penultimate inequality can be seen by case separation as follows: If $S\subseteq P$ then there is no splitting into $S\cap P$ and $S\setminus P$, and we already have $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{|S_{><}|})$ simply because the patch $P$ must be filled with zeroes that were not yet in $S$, so this is at least $|S_{><}|$ resampled zeroes. For the more general case, assume that $S$ is larger than $P$ on both sides of $P$. This is illustrated in Figure \ref{fig:patches}. We will focus on the following sum that was in the above equations:
\begin{align*}
\sum_{f_{\overline{P}}\in\{0,1'\}^{|S \cap \overline{P}|}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\overline{\Z{(P_{\min}-1)}}\cap\overline{\Z{(P_{\max}+1)}})
\end{align*}
By Lemma \ref{lemma:eventindependence} we can split this sum into two parts: the part to the left of $P$ and the part to the right of $P$. Define $S_\mathrm{left}=S\cap[S_\mathrm{min},P_{\mathrm{min}}-1]$ and $S_\mathrm{right}=S\cap[P_{\mathrm{max}}+1,S_\mathrm{max}]$, so that $S\cap\overline{P} = S_\mathrm{left} \cup S_\mathrm{right}$. These are also illustrated in Figure \ref{fig:patches}. Then we have
\begin{align*}
\mathbb{P}_{S(f_{\overline{P}})}(\overline{\Z{(P_{\min}-1)}}\cap\overline{\Z{(P_{\max}+1)}})
&= \mathbb{P}_{S(f_{\mathrm{left}})}(\overline{\Z{(P_{\min}-1)}}) \;\cdot\; \mathbb{P}_{S(f_{\mathrm{right}})}(\overline{\Z{(P_{\max}+1)}})
\end{align*}
and hence we can split the sum. Without loss of generality we now only consider the `right' part of the sum:
\begin{align*}
\sum_{f\in\{0,1'\}^{|S_\mathrm{right}|}} \rho_{S_\mathrm{right}(f)} \mathbb{P}_{S_\mathrm{right}(f)}(\overline{\Z{(P_{\max}+1)}})
\end{align*}
Now further split this sum over the value of $f$ at position $S_\mathrm{max}$:
\begin{align*}
\sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}} \sum_{f'\in\{0,1'\}}
\rho_{S_\mathrm{right}(f\,f')} \mathbb{P}_{S_\mathrm{right}(f\,f')}(\overline{\Z{(P_{\max}+1)}})
\end{align*}
and we use the definition of $\rho$ for the sum over $f'$:
\begin{align*}
\sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}}
\rho_{S_\mathrm{right}(f)} \left(p \mathbb{P}_{S_\mathrm{right}(f\, 0)}(\overline{\Z{(P_{\max}+1)}}) + (-p) \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{\Z{(P_{\max}+1)}}) \right)
\end{align*}
Now we recognize the setup of Lemma~\ref{lemma:probIndep} with $I=S_\mathrm{right}(f\,0)$ and $I'=S_\mathrm{right}(f\,1)$. The lemma yields
\begin{align*}
\mathbb{P}_{S_\mathrm{right}(f\, 0)}(\overline{\Z{(P_{\max}+1)}}) &= \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{\Z{(P_{\max}+1)}}) + \mathcal{O}(p^{S_\mathrm{max}-(P_{\mathrm{max}}+1)+1-|S_\mathrm{right}|}) \\
&= \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{\Z{(P_{\max}+1)}}) + \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|}) .
\end{align*}
Entering this back into the sum gives
\begin{align*}
\sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}}
\rho_{S_\mathrm{right}(f)} \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|+1})
= \sum_{f\in\{0,1'\}^{|S_\mathrm{right}|}}
\rho_{S_\mathrm{right}(f)} \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|})
\end{align*}
One can do the same for the `left' part, which gives a term $\mathcal{O}(p^{P_\mathrm{min}-S_{\mathrm{min}}-|S_\mathrm{left}|})$. The part of $S$ that was within $P$ gives $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{P_\mathrm{max}-P_\mathrm{min}+1-|S\cap P|})$. Combining these three factors yields
\begin{align*}
(\textrm{left part})(P\textrm{ part})(\textrm{right part}) &=
\mathcal{O}(p^{P_\mathrm{min}-S_{\mathrm{min}}-|S_\mathrm{left}|}) \cdot \mathcal{O}(p^{P_\mathrm{max}-P_\mathrm{min}+1-|S\cap P|}) \cdot \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|}) \\
&= \mathcal{O}(p^{S_\mathrm{max}-S_\mathrm{min}+1-|S_\mathrm{left}\cup S_\mathrm{right}\cup (S\cap P)|})\\
&= \mathcal{O}(p^{S_\mathrm{max}-S_\mathrm{min}+1-|S|})
= \mathcal{O}(p^{|S_{><}|})
\end{align*}
as required. This finishes the proof.
\begin{comment}
\subsection{Sketch of the (false) proof of the linear bound \ref{it:const}}
Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
%\begin{definition}[Resample sequences]
% A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
%\end{definition}
%\begin{definition}[Constrained resample sequence]\label{def:constrainedRes}
% Let $C\subseteq[n]$ denote a slot configuration, and let $a\in\{\text{res},\neg\text{res}\}^{n-|C|}$, where the elements correspond to labels ``resampled" vs. ``not resampled" respectively.
% For $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
% We define the set $A^{(C,a)}\subseteq RS$ as the set of resample sequences $(r_\ell)$ such that for all $j$ which has $a_j=\text{res}$ we have that $i_j$ appears in $(r_\ell)$ but for $j'$-s which have $a_{j'}=\neg\text{res}$ we have that $i_{j'}$ never appears in $(r_\ell)$.
%\end{definition}
\begin{definition}[Conditional expected number of resamples]
For a slot configuration $C\subseteq[n]$ and $a\in\{\!\text{ever},\text{ never}\}^{n-|C|}$ we define the event $A^{(C,a)}:=\bigwedge_{j\in[n-|C|]}\{i_j\text{ has }a_j\text{ become }0\text{ before reaching }\mathbf{1}\}$,
where $i_j$ is the $j$-th vertex of $[n]\setminus C$.
Then we also define
$$R^{(C,a)}_b:=\mathbb{E}[\#\{\text{resamplings when started from inital state }b\}|A^{(C,a)}].$$
\end{definition}
As in Mario's proof I use the observation that
\begin{align*}
R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p)\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}}\sum_{a\in\{\!\text{ever},\text{ never}\}^{n-|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)P_{C(f)}(A^{(C,a)})\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\!\text{ever},\text{ never}\}^{n-|C|}} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)P_{C(f)}(A^{(C,a)}),
\end{align*}
where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$, while all other location in $[n]\setminus C$ are set to $1$.
When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context. Finally by $P_{C(f)}(A^{(C,a)})$ we denote the probability that the event $A^{(C,a)}$ holds.
As in Definition for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that
$a_{j_1}=\text{never}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions.
I wanted to prove that
\begin{equation}\label{eq:conditionalCancellation}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0,
\end{equation}
based on the observation that for all $f\in\{0,1'\}^{|C|}$ we have
that
\begin{equation}\label{eq:keyIndependce}
R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
\end{equation}
where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain ``never". We define things analogously for $f_r$ and $a_r$.
The reason why \eqref{eq:keyIndependce} holds is that as before the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ can become $0$. To be more precise each resample sequence $\left(C(f)\rightarrow \mathbf{1} \right)\in A^{(C,a)}$ can be uniquely decomposed to resample sequences $\left(C_l(f_l)\rightarrow \mathbf{1}\right)\in A^{(C_l,a_l)}$ and $\left(C_r(f_r)\rightarrow \mathbf{1}\right)\in A^{(C_r,a_r)}$. The sum of probabilities of the set of resample sequences $\{r\}$ which have decomposition $(r_l,r_r)$ have probability which is the product of the probabilities of $r_l$ and $r_r$ as shown in the proof of Claim~\ref{claim:expectationsum}. This proves that the set of all resample sequences $\left(C(f)\rightarrow \mathbf{1}\right)\in A^{(C,a)}$ for our purposes can be viewed as a product set with product probability distribution. Therefore the halves can be treated independently and so the expectation values just add up.
From here I wanted to mimic Mario's proof:
\begin{align*}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
\sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
&= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
&\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
&= 0.
\end{align*}
The nasty issue which I did not realise that the missing term $P_{C(f)}(A^{(C,a)})$ is non-constant: even though the event $A^{(C,a)}$ is independent of $f$ the probability $P_{C(f)}(A^{(C,a)})=P_{C(f_l)}(A^{(C_l,a_l)})\cdot P_{C(f_r)}(A^{(C_r,a_r)})$ is not and so the above breaks down.
Observe that if \eqref{eq:conditionalCancellation} would hold for configurations that cut the slot configuration to two halves it would imply that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{ever}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along ``never" vertices, or there is an island of $\text{ever}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot set these indices to $0$, without reaching them by some resamplings, and thereby building a path of $0$-s leading there.
If $|C\cup\{i_j:a_j=\text{ever}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{ever}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This would prove that $a_k^{(n)}$ is constant for $n\geq k+1$. The same arguments would directly translate to the torus and other translationally invariant objects, so we could go higher dimensional as Mario suggested.
Questions:
\begin{itemize}
\item Is it possible to somehow fix this proof?
\item In view of this (false) proof, can we better characterise $a_k^{(k+1)}$?
\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
\item Can we prove the conjectured formula for $a_k^{(3)}$?
\end{itemize}
\begin{comment}
\subsection{Sketch of the proof of the linear bound \ref{it:const}}
Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
\begin{definition}[Resample sequences]
A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
\end{definition}
\begin{definition}[Constrained resample sequence]\label{def:constrainedRes}
Let $C\subseteq[n]$ denote a slot configuration, and let $a\in\{\text{res},\neg\text{res}\}^{n-|C|}$, where the elements correspond to labels ``resampled" vs. ``not resampled" respectively.
For $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
We define the set $A^{(C,a)}\subseteq RS$ as the set of resample sequences $(r_\ell)$ such that for all $j$ which has $a_j=\text{res}$ we have that $i_j$ appears in $(r_\ell)$ but for $j'$-s which have $a_{j'}=\neg\text{res}$ we have that $i_{j'}$ never appears in $(r_\ell)$.
\end{definition}
\begin{definition}[Expected number of resamples]
For $b\in\{0,1\}^n$ we define
$$R_b=\mathbb{E}[\#\{\text{resamplings when started from inital state }b\}],$$
and for $(C,a)$ as in the previous definition we also define
$$R^{(C,a)}_b=\mathbb{E}[\#\{\text{resamplings }\in A^{(C,a)} \text{ when started from inital state }b\}].$$
Here we mean by the latter that after each resampling we check whether the sequence of resamplings so far is in $A^{(C,a)}$, if yes we count it, otherwise we do not count.
\end{definition}
As in Mario's proof I use the observation that
\begin{align*}
R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p)\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}}\sum_{a\in\{\text{res},\neg\text{res}\}^{n-|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\text{res},\neg\text{res}\}^{n-|C|}} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p),
\end{align*}
where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$, while all other location in $[n]\setminus C$ are set to $1$.
When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context.
As in Definition~\ref{def:constrainedRes} for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that
$a_{j_1}=\neg\text{res}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions.
We claim that
$$\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0.$$
This is based on the observation that that for all $f\in\{0,1'\}^{|C|}$ we have
that
\begin{equation}\label{eq:keyIndependceWrong}
R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
\end{equation}
where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain $\neg\text{res}$. We define things analogously for $f_r$ and $a_r$.
The reason why \eqref{eq:keyIndependceWrong} holds is as before that the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ are resampled. One could probably also argue similarly as Tom's grid figure shows.
From here the proof goes just as in Mario's proof:
\begin{align*}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
\sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
&= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
&\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
&= 0.
\end{align*}
Observe that it implies that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{res}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along $\neg\text{res}$ vertices, or there is an island of $\text{res}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot resample these indices without first setting them to $0$, but under the conditions they can be never reached by any resampling, therefore they remain $1$ always.
If $|C\cup\{i_j:a_j=\text{res}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{res}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This proves that $a_k^{(n)}$ is constant for $n\geq k+1$.
Note that the heart of the proof is \eqref{eq:keyIndependceWrong}, so this is what we should double check.
The same arguments directly translate to the torus and other translationally invariant objects, so we can go higher dimensional :-) as Mario suggested.
Questions:
\begin{itemize}
\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
\item Can we prove the conjectured formula for $a_k^{(3)}$?
\end{itemize}
\end{comment}
\begin{comment}
\begin{definition}[Neighborhood]
For the length-$n$ cycle we identify sites with $[n]$.
For a subset $S\subseteq [n]$ we define the $k$ neighborhood of $S$ as
$N_k(S):=\cup_{s\in S} \{s-k,s-k+1,\ldots,s+k\}$ where numbers are interpreted mod $n$ and we represent the $\equiv 0$ class by $n$).
\end{definition}
\begin{definition}[Blocks and Gaps]
For a configuration $C\subseteq [n]$ we call the connected components of $[n]\setminus N_1(C)$ the gaps. We denote by $m_C$ the number of gaps.
We call a non-empty subset $B\subset C$ a block if $N_3(B)\cap C=B$ and $B$ is minimal, i.e., there is no proper subset $\emptyset\neq B'\subsetneq B$ satisfying $N_3(B')\cap C=B'$.
Observe that whenever $m_C\geq 2$ the number of blocks is the same as the number of gaps.
\end{definition}
\begin{definition}[Crossings]
We say that a run (path) of the resampling procedure crosses $i\in[n]$ if there is ever a $0$ in $N_1({i})$ during the run.
\end{definition}
\begin{definition}[Enumerating gaps and mid points]
Let $G_1,G_2,\ldots, G_{m_C}$ be an enumeration of the gaps respecting the cyclic ordering, and let $g_i$ be the middle element of $G_i$, if there are two middle elements we choose the smaller according to the cyclic ordering. (If $m_C=1$ and $G_1=[n]$ let $g_1=1$.)
If $m_C\geq 2$ then for all $i\in[m_C]$ let $B_i$ be the block between $G_i$ and $G_{i+1}$.
\end{definition}
As in Mario's proof I use the observation that
\begin{align*}
R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_b(p)\\
&= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p),
\end{align*}
where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$.
For $a\in\{\text{crossed},\text{not crossed}\}^m$ we also introduce the notation $R^a_{C(f)}(p):=\mathbb{E}(\#\{\text{resamples before reaching }\mathbbm{1} \text{ from } C(f)\}|\bigwedge_{j\in[m_C]}g_j \text{ is } a_j)\cdot\mathbb{P}(\bigwedge_{j\in[m_C]}g_j \text{ is } a_j)$, which we define as $0$ if the conditioning event has $0$ probability.
Since $$R_{C(f)}(p)=\sum_{a\in\{\text{crossed},\text{not crossed}\}^{m_C}}R^a_{C(f)}(p),$$ we can further rewrite the expectation as
\begin{align*}
R^{(n)}(p) &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\text{crossed},\text{not crossed}\}^{m_C}}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p).
\end{align*}
Suppose that $a$ contains at least two ``not crossed'', the we claim that $\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p)=0$. Let $j_1\neq j_2$ be two distinct indexes such that $a_{j_1}$ and $a_{j_2}$ are both saying ``not crossed''. Let $B_l:=B_{j_1}\cup B_{j_1+1}\cup\cdots\cup B_{j_2-1}$ and $B_r:=B_{j_2}\cup B_{j_2+1}\cup\cdots\cup B_{j_1-1}$ (again we interpret indexes mod $m_C$).
Then we claim that for all $f\in\{0,1'\}^{|C|}$ we have
that
\begin{equation}\label{eq:keyIndependceOld}
R^a_{C(f)}(p)=R^a_{B_l(f)}(p)+R^a_{B_r(f)}(p).
\end{equation}
The reason is as before that the halves are independent because neither $g_{j_1}$ nor $g_{j_2}$ is crossed. One could probably similarly prove it as the grid figure shows.
From here the proof goes just as in Mario's proof:
\begin{align*}
\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p)&=
\sum_{f_l\in\{0,1'\}^{|B_l|}} \sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_l|+|f_r|}p^{|B_l|+|B_r|} \left( R^a_{B_l(f)} + R^a_{B_r(f)} \right)\\
&= p^{|C|}\sum_{f_l\in\{0,1'\}^{|B_l|}} (-1)^{|f_l|} R^a_{B_l(f)} \sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_r|} \\
&\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_r|} R^a_{B_r(f)} \sum_{f_l\in\{0,1'\}^{|B_l|}} (-1)^{|f_l|} \\
&= 0
\end{align*}
From this it follows that the only contribution comes from paths that cross all but one (or all) of the mid gaps. This then implies that it is enough to consider $\mathcal{O}(k)$ length configurations. (We define the length of a configuration $C$ as $n-\max_{j\in[m_C]}|G_j|$.)
Note that the heart of the proof is \eqref{eq:keyIndependceOld}, so this is what we should double check.
In fact I think the independence that we use in \eqref{eq:keyIndependceOld} can be also proven when we define a crossing as crossing the actual point, and not its $1$-neighborhood. It then would make it possible to define blocks as consecutive slacks. Also then we could actually use all points of the gaps not only the mid points. The requirement for the cancellation would be that there are ``not crossed'' labels from at least two distinct gaps. This would probably lead to the optimal $k+1$ bound giving the actual statement \ref{it:const}.
Speculation: The $n=k$ case would then probably not work because the all $0$ starting configuration is invariant under rotations.
To actually go below $2k$ one needs to be careful, because there are periodic configurations that are invariant under some rotations causing double counting issues. This can be probably resolved by showing that when a pattern becomes periodic for some $n$ it actually produces periodicity times more expectation due to symmetry. But this is all just speculation.
\end{comment}
\bibliographystyle{alpha}
\bibliography{Resample.bib}
\end{document}
|