Files @ d4a402112276
Branch filter:

Location: AENC/resampling_chain/main.tex - annotation

Tom Bannink
Fix typo
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
415095330321
415095330321
415095330321
c4675a568c22
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
0aef3bd8b292
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
c4675a568c22
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
9f86b29b20b0
39a2a174b465
9f86b29b20b0
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
9f86b29b20b0
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
ecd7e8aa6daf
ecd7e8aa6daf
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
702cfce575b3
ecd7e8aa6daf
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
c71ac3dcabc6
415095330321
c71ac3dcabc6
c71ac3dcabc6
0aef3bd8b292
0aef3bd8b292
c71ac3dcabc6
415095330321
415095330321
0aef3bd8b292
415095330321
415095330321
415095330321
0aef3bd8b292
415095330321
415095330321
0aef3bd8b292
415095330321
0aef3bd8b292
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
d4a402112276
415095330321
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
9f86b29b20b0
415095330321
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
d4a402112276
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
415095330321
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
415095330321
415095330321
0aef3bd8b292
415095330321
415095330321
415095330321
415095330321
415095330321
c71ac3dcabc6
c71ac3dcabc6
c71ac3dcabc6
415095330321
415095330321
415095330321
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
415095330321
415095330321
415095330321
415095330321
0aef3bd8b292
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
0aef3bd8b292
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
82e90f72c8ad
415095330321
415095330321
415095330321
415095330321
82e90f72c8ad
82e90f72c8ad
82e90f72c8ad
82e90f72c8ad
82e90f72c8ad
82e90f72c8ad
82e90f72c8ad
82e90f72c8ad
415095330321
415095330321
9f86b29b20b0
9f86b29b20b0
415095330321
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
9f86b29b20b0
415095330321
415095330321
415095330321
0aef3bd8b292
0aef3bd8b292
c2fa910c4916
0aef3bd8b292
c2fa910c4916
0aef3bd8b292
c2fa910c4916
c2fa910c4916
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
fcbfed677dc9
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
fd8b2cc696df
c71ac3dcabc6
fcbfed677dc9
71d7c8f3b5ef
fcbfed677dc9
c71ac3dcabc6
fcbfed677dc9
280d2941c33b
280d2941c33b
280d2941c33b
280d2941c33b
280d2941c33b
fcbfed677dc9
71d7c8f3b5ef
fcbfed677dc9
71d7c8f3b5ef
fcbfed677dc9
c71ac3dcabc6
6cf1713e4201
0aef3bd8b292
fd8b2cc696df
0aef3bd8b292
71d7c8f3b5ef
fcbfed677dc9
71d7c8f3b5ef
fcbfed677dc9
fcbfed677dc9
fcbfed677dc9
fcbfed677dc9
71d7c8f3b5ef
71d7c8f3b5ef
fcbfed677dc9
71d7c8f3b5ef
fcbfed677dc9
71d7c8f3b5ef
c2fa910c4916
280d2941c33b
71d7c8f3b5ef
fcbfed677dc9
fcbfed677dc9
fcbfed677dc9
fcbfed677dc9
71d7c8f3b5ef
71d7c8f3b5ef
fcbfed677dc9
fd8b2cc696df
fcbfed677dc9
71d7c8f3b5ef
280d2941c33b
71d7c8f3b5ef
71d7c8f3b5ef
0aef3bd8b292
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
71d7c8f3b5ef
6cf1713e4201
6cf1713e4201
6cf1713e4201
71d7c8f3b5ef
71d7c8f3b5ef
71d7c8f3b5ef
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
6cf1713e4201
71d7c8f3b5ef
6cf1713e4201
6cf1713e4201
71d7c8f3b5ef
b43c29412d5d
71d7c8f3b5ef
6cf1713e4201
6cf1713e4201
71d7c8f3b5ef
71d7c8f3b5ef
71d7c8f3b5ef
6cf1713e4201
71d7c8f3b5ef
71d7c8f3b5ef
6cf1713e4201
71d7c8f3b5ef
71d7c8f3b5ef
6cf1713e4201
71d7c8f3b5ef
6cf1713e4201
b43c29412d5d
0aef3bd8b292
c71ac3dcabc6
5236ff40cd19
5236ff40cd19
5236ff40cd19
0aef3bd8b292
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
fd8b2cc696df
0aef3bd8b292
5236ff40cd19
5236ff40cd19
fd8b2cc696df
fd8b2cc696df
fd8b2cc696df
fd8b2cc696df
fd8b2cc696df
fd8b2cc696df
0aef3bd8b292
5236ff40cd19
0aef3bd8b292
0aef3bd8b292
5236ff40cd19
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
5236ff40cd19
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
0aef3bd8b292
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
aad4326b06f9
aad4326b06f9
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
ffbfb3763633
c2fa910c4916
c2fa910c4916
c2fa910c4916
ffbfb3763633
c2fa910c4916
ffbfb3763633
ffbfb3763633
c2fa910c4916
ffbfb3763633
ffbfb3763633
ffbfb3763633
ffbfb3763633
ffbfb3763633
ffbfb3763633
aad4326b06f9
c2fa910c4916
aad4326b06f9
ffbfb3763633
c2fa910c4916
c2fa910c4916
0d0911198b0d
c2fa910c4916
c2fa910c4916
c2fa910c4916
0d0911198b0d
c2fa910c4916
0d0911198b0d
0d0911198b0d
0d0911198b0d
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
ffbfb3763633
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
ffbfb3763633
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
0d0911198b0d
0d0911198b0d
0d0911198b0d
ffbfb3763633
aad4326b06f9
0d0911198b0d
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
0d0911198b0d
0d0911198b0d
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
c2fa910c4916
0d0911198b0d
0d0911198b0d
ffbfb3763633
0d0911198b0d
0d0911198b0d
0d0911198b0d
ffbfb3763633
0d0911198b0d
ffbfb3763633
0d0911198b0d
0d0911198b0d
ffbfb3763633
0d0911198b0d
ffbfb3763633
0d0911198b0d
0d0911198b0d
0d0911198b0d
ffbfb3763633
0d0911198b0d
ffbfb3763633
0d0911198b0d
0d0911198b0d
0d0911198b0d
ffbfb3763633
ffbfb3763633
c2fa910c4916
ffbfb3763633
c2fa910c4916
0d0911198b0d
c2fa910c4916
aad4326b06f9
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
db52549f493d
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
96df08e480a7
96df08e480a7
96df08e480a7
96df08e480a7
96df08e480a7
96df08e480a7
96df08e480a7
96df08e480a7
96df08e480a7
5236ff40cd19
5236ff40cd19
5236ff40cd19
0aef3bd8b292
53e0f54cd945
53e0f54cd945
53e0f54cd945
5236ff40cd19
5236ff40cd19
53e0f54cd945
5236ff40cd19
5236ff40cd19
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
53e0f54cd945
2bc21c061c0c
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
5236ff40cd19
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
415095330321
82e90f72c8ad
\documentclass[a4paper,11pt,english,final]{article}
\pdfoutput=1

\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{fullpage}

\usepackage{graphics}
\usepackage{diagbox}
\usepackage[table]{xcolor}% http://ctan.org/pkg/xcolor
\usepackage{graphicx}
\usepackage{caption}
\captionsetup{compatibility=false}
\graphicspath{{./}}


\usepackage{tikz}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{bm}
\usepackage{bbm}
%\usepackage{bbold}
\usepackage{verbatim}

%for correcting large brackets spacing
\usepackage{mleftright}\mleftright

\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{enumitem}
\usepackage{float}

%\usepackage{titling}

%\setlength{\droptitle}{-5mm}  

%\usepackage{MnSymbol}
\newcommand{\cupdot}{\overset{.}{\cup}}
\newcommand{\pvp}{\vec{p}{\kern 0.45mm}'}

\DeclarePairedDelimiter\bra{\langle}{\rvert}
\DeclarePairedDelimiter\ket{\lvert}{\rangle}
\DeclarePairedDelimiterX\braket[2]{\langle}{\rangle}{#1 \delimsize\vert #2}
\newcommand{\underflow}[2]{\underset{\kern-60mm \overbrace{#1} \kern-60mm}{#2}}

\def\Ind(#1){{{\tt Ind}({#1})}}
\def\Id{\mathrm{Id}}
\def\Pr{\mathrm{Pr}}
\def\Tr{\mathrm{Tr}}
\def\im{\mathrm{im}}
\newcommand{\bOt}[1]{\widetilde{\mathcal O}\left(#1\right)}

\newcommand{\QMAo}{\textsf{QMA$_1$}}
\newcommand{\BQP}{\textsf{BQP}}
\newcommand{\NP}{\textsf{NP}}
\newcommand{\SharpP}{\textsf{\# P}}

\newcommand{\diam}[1]{\mathcal{D}\left(#1\right)}
\newcommand{\paths}[1]{\mathcal{P}\left(#1\to\mathbf{1}\right)}
\newcommand{\maxgap}[1]{\mathrm{maxgap}\left(#1\right)}
\newcommand{\gaps}[1]{#1_{\mathrm{gaps}}}
\renewcommand{\P}{\mathbb{P}}
\newcommand{\NZ}[1]{\mathrm{NZ}^{(#1)}}
\newcommand{\Z}[1]{\mathrm{Z}^{(#1)}}
%\newcommand{\dist}[1]{d_{\!\!\not\,#1}}
\newcommand{\dist}[1]{d_{\neg #1}}

\newcommand{\todo}[1]{{\color{red}\textbf{TODO:} #1}}

\long\def\ignore#1{}

\newtheorem{theorem}{Theorem}
\newtheorem{corollary}[theorem]{Corollary}%[theorem]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{prop}[theorem]{Proposition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{remark}[theorem]{Remark}

\newenvironment{proof}
{\noindent {\bf Proof. }}
{{\hfill $\Box$}\\	\smallskip}

\usepackage[final]{hyperref}
\hypersetup{
	colorlinks = true,
	allcolors = {blue},
}
\usepackage{ifpdf} 
\ifpdf
	\typeout{^^J *** PDF mode *** } 
%	\input{myBiblatex.tex}
%	\addbibresource{LLL.bib}	
%\else
%	\typeout{^^J *** DVI mode ***} 
%	\hypersetup{breaklinks = true}
%	\usepackage[quadpoints=false]{hypdvips}
	\let\oldthebibliography=\thebibliography
	\let\endoldthebibliography=\endthebibliography
	\renewenvironment{thebibliography}[1]{%
		\begin{oldthebibliography}{#1}%
			\setlength{\itemsep}{-.3ex}%
	}%
	{%
		\end{oldthebibliography}%
	}
\fi 

%opening
\title{Criticality of resampling on the cycle / in the evolution model}
%\author{?\thanks{QuSoft, CWI and University of Amsterdam, the Netherlands. \texttt{?@cwi.nl} }
	%\and
	%?%
%}
%\thanksmarkseries{arabic}
%\renewcommand{\thefootnote}{\fnsymbol{footnote}}
%\date{\vspace{-12mm}}

\begin{document}
	
	\maketitle

	\begin{abstract}
		The model we consider is the following~\cite{ResampleLimit}: We have a cycle of length $n\geq 3$. Initially we set each site to $0$ or $1$ independently at each site, such that we set it $0$ with probability $p$. After that in each step we select a random vertex with $0$ value and resample it together with its two neighbours assigning $0$ with probability $p$ to each vertex just as initially. The question we try to answer is what is the expected number of resamplings performed before reaching the all $1$ state. 
		
		We present strong evidence for a remarkable critical behaviour. We conjecture that there exists some $p_c\approx0.62$, such that for all $p\in[0,p_c)$ the expected number of resamplings is bounded by a $p$ dependent constant times $n$, whereas for all $p\in(p_c,1]$ the expected number of resamplings is exponentially growing in $n$.
	\end{abstract}
	%Let $R(n)$ denote this quantity for a length $n\geq 3$ cycle.
	
	We can think about the resampling procedure as a Markov chain. To describe the corresponding matrix we introduce some notation. For $b\in\{0,1\}^n$ let $r(b,i,(x_{-1},x_0,x_1))$ denote the bit string which differs form $b$ by replacing the bits at index $i-1$,$i$ and $i+1$ with the values in $x$, interpreting the indices $\!\!\!\!\mod n$. Also for $x\in\{0,1\}^k$ let $p(x)=p((x_1,\ldots,x_k))=\prod_{i=1}^{k}p^{(1-x_i)}(1-p)^{x_i}$. Now we can describe the matrix of the Markov chain. We use row vectors for the elements of the probability distribution indexed by bitstrings of length $n$. Let $M_{(n)}$ denote the matrix of the leaking Markov chain:
	$$
		M_{(n)}=\sum_{b\in\{0,1\}^n\setminus{\{1\}^n}}\sum_{i\in[n]:b_i=0}\sum_{x\in\{0,1\}^3}E_{(b,r(b,i,x))}\frac{p(x)}{n-|b|},
	$$
	where $E_{(i,j)}$ denotes the matrix that is all $0$ except $1$ at the $(i,j)$th entry.

	We want to calculate the average number of resamplings $R^{(n)}$, which we define as the expected number of resamplings divided by $n$. For this let $\rho,\mathbbm{1}\in[0,1]^{2^n}$ be indexed with elements of $\{0,1\}^n$ such that $\rho_b=p(b)$ and $\mathbbm{1}_b=1$. Then we use that the expected number of resamplings is just the hitting time of the Markov chain:
	\begin{align*}
		R^{(n)}:&=\mathbb{E}(\#\{\text{resampling before termination}\})/n\\
		&=\sum_{k=1}^{\infty}P(\text{at least } k \text{ resamplings are performed})/n\\
		&=\sum_{k=1}^{\infty}\rho M_{(n)}^k \mathbbm{1}/n\\
		&=\sum_{k=0}^{\infty}a^{(n)}_k p^k
	\end{align*}

	\begin{table}[]
	\centering
	\caption{Table of the coefficients $a^{(n)}_k$}
	\label{tab:coeffs}
	\resizebox{\columnwidth}{!}{%
		\begin{tabular}{c|ccccccccccccccccccccc}
			\backslashbox[10mm]{$n$}{$k$} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\		\hline
			3 &	0 & 1 & \cellcolor{blue!25}2 & 3+1/3 & 5.00 & 7.00 & 9.33 & 12.00 & 15.00 & 18.33 & 22.00 & 26.00 & 30.33 & 35.00 & 40.00 & 45.333 & 51.000 & 57.000 & 63.333 & 70.000 & 77.000 \\
			4 &	0 & 1 & 2 & \cellcolor{blue!25}3+2/3 & 6.16 & 9.66 & 14.3 & 20.33 & 27.83 & 37.00 & 48.00 & 61.00 & 76.16 & 93.66 & 113.6 & 136.33 & 161.83 & 190.33 & 222.00 & 257.00 & 295.50 \\
			5 &	0 & 1 & 2 & 3+2/3 & \cellcolor{blue!25}6.44 & 10.8 & 17.3 & 26.65 & 39.43 & 56.48 & 78.65 & 106.9 & 142.2 & 185.8 & 238.7 & 302.41 & 378.05 & 467.13 & 571.14 & 691.69 & 830.44 \\
			6 &	0 & 1 & 2 & 3+2/3 & 6.44 & \cellcolor{blue!25}11.0 & 18.5 & 30.02 & 47.10 & 71.68 & 106.0 & 152.9 & 215.4 & 297.4 & 403.1 & 537.21 & 705.25 & 913.31 & 1168.2 & 1477.4 & 1849.1 \\
			7 &	0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & \cellcolor{blue!25}18.7 & 31.21 & 50.83 & 80.80 & 125.3 & 189.7 & 280.8 & 407.0 & 578.6 & 808.13 & 1110.2 & 1502.6 & 2005.6 & 2643.2 & 3443.1 \\
			8 &	0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & \cellcolor{blue!25}31.44 & 52.08 & 84.95 & 136.0 & 213.6 & 328.9 & 496.5 & 735.6 & 1070.7 & 1532.5 & 2159.5 & 2998.8 & 4108.1 & 5556.7 \\
			9 &	0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & \cellcolor{blue!25}52.30 & 86.27 & 140.7 & 226.3 & 358.4 & 558.4 & 855.4 & 1289.0 & 1911.5 & 2791.4 & 4017.2 & 5701.4 & 7985.9 \\
			10&	0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & 52.30 & \cellcolor{blue!25}86.49 & 142.1 & 231.6 & 373.4 & 594.8 & 934.4 & 1447.1 & 2209.0 & 3324.6 & 4934.8 & 7226.9 & 10447. \\
            \vdots \\
            15& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.08 & 18.76 & 31.45 & 52.31 & 86.49 & 142.33 & 233.31 & 381.17 & 621.02 & \cellcolor{blue!25}1009.38 & 1637.13 & % 2650.74 & 4285.68 & 6913.55 & 11171.2 & 18052.2
        \end{tabular}
	}
	\end{table}

	We observe that this is a power series in $p$. We discovered a very regular structure in this power series. It seems that for all $k\in\mathbb{N}$ and for all $n>k$ we have that $a^{(n)}_k$ is constant, this conjecture we verified using a computer up to $n=14$. 
	\newpage
	\noindent Based on our calculations presented in Table~\ref{tab:coeffs} and Figure~\ref{fig:coeffs_conv_radius} we make the following conjectures:
	\begin{enumerate}[label=(\roman*)]
		\item $\forall k\in\mathbb{N}, \forall n\geq 3 : a^{(n)}_k\geq 0$	\label{it:pos}	
        (A simpler version: $\forall k>0: a_k^{(3)}=(k+1)(k+2)/6$)
		\item $\forall k\in\mathbb{N}, \forall n>m\geq 3 : a^{(n)}_k\geq a^{(m)}_k$ \label{it:geq}		
		\item $\forall k\in\mathbb{N}, \forall n,m\geq \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const}		
  		\item $\exists p_c=\lim\limits_{k\rightarrow\infty}1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$ \label{it:lim}			
	\end{enumerate}
	We also conjecture that $p_c\approx0.61$, see Figure~\ref{fig:coeffs_conv_radius}.

	\begin{figure}[!htb]\centering
	\includegraphics[width=0.5\textwidth]{coeffs_conv_radius.pdf}
	%\includegraphics[width=0.5\textwidth]{log_coeffs.pdf}	
	\caption{$1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$} %$\frac{1}{\sqrt[k]{a_k^{(k+1)}}}$
	\label{fig:coeffs_conv_radius}
	\end{figure}
    
    For reference, we also explicitly give formulas for $R^{(n)}(p)$ for small $n$. We also give them in terms of $q=1-p$ because they sometimes look nicer that way.
    \begin{align*}
    	R^{(3)}(p) &= \frac{1-(1-p)^3}{3(1-p)^3}
        			= \frac{1-q^3}{3q^3}\\
    	R^{(4)}(p) &= \frac{p(6-12p+10p^2-3p^3)}{6(1-p)^4}
                    = \frac{(1-q)(1+q+q^2+3q^3)}{6q^4}\\
        R^{(5)}(p) &= \frac{p(90-300p+435p^2-325p^3+136p^4-36p^5+6p^6)}{15(1-p)^5(6-2p+p^2)}\\
                   &= \frac{(1-q)(6+5q+6q^2+21q^3+46q^4+6q^6)}{15q^5(5+q^2)}
    \end{align*}
    For $n=3$ the system becomes very simple because regardless of the current state, the probability of going to $111$ is always equal to $(1-p)^3$. Therefore the expected number of resamplings is simply the expectation of a geometric distribution. This gives the formula for $R^{(3)}(p)$ as shown above. Note that the $k$-th coefficient of the powerseries of a function $f(p)$ is given by $\frac{1}{k!}\left.\frac{d^k f}{dp^k}\right|_{p=0}$, i.e. the $k$-th derivative to $p$ evaluated at $0$ divided by $k!$. For the function $R^{(3)}(p) = (1-p)^{-3} - 1$ this yields $a^{(3)}_k = (k+2)(k+1)/6$ for $k\geq 1$ and $a^{(3)}_0=0$.

    We can do the same for $n=4,5$, which gives, for $k\geq 1$ (with Mathematica):
    \begin{align*}
        a^{(3)}_k &= \frac{(k+2)(k+1)}{6}\\
        a^{(4)}_k &= \frac{1}{6}\left(2+\frac{(k+3)(k+2)(k+1)}{6}\right)\\
        a^{(5)}_k &= \frac{1}{15}\left(\frac{(k+4)(k+3)(k+2)(k+1)}{20} - \frac{(k+3)(k+2)(k+1)}{30} - \frac{(k+2)(k+1)}{50} + \frac{76(k+1)}{25}\right.\\
                  &  \qquad\quad \left. + \frac{626}{125} - \frac{4}{250}
                  \left( \left(\frac{1+i\sqrt{5}}{6}\right)^k(94-25\sqrt{5}i)+\left(\frac{1-i\sqrt{5}}{6}\right)^k(94+25\sqrt{5}i) \right)
                  \right)
    \end{align*}
    and from $n=6$ and onwards, the expression becomes complicated and Mathematica can only give expressions including roots of polynomials.

    ~

	If statements \ref{it:pos}-\ref{it:lim} are true, then we can define the function 
	$$R^{(\infty)}(p):=\sum_{k=0}^{\infty}a^{(k+1)}_k p^k,$$
	which would then have radius of convergence $p_c$, also it would satisfy for all $p\in[0,p_c)$ that $R^{(n)}(p)\leq R^{(\infty)}(p)$ and $\lim\limits_{n\rightarrow\infty}R^{(n)}(p)=R^{(\infty)}(p)$.
	It would also imply, that for all $p\in(p_c,1]$ we get $R^{(n)}(p)=\Omega\left(\left(\frac{p}{p_c}\right)^{n/2}\right)$.
	This would then imply a very strong critical behaviour. It would mean that for all $p\in[0,p_c)$ the expected number of resamplings is bounded by a constant $R^{(\infty)}(p)$ times $n$, whereas for all $p\in(p_c,1]$ the expected number of resamplings is exponentially growing in $n$.
	
	Now we turn to the possible proof techniques for justifying the conjectures \ref{it:pos}-\ref{it:lim}.
	First note that $\forall n\geq 3$ we have $a^{(n)}_0=0$, since for $p=0$ the expected number of resamplings is $0$.
	Also note that the expected number of initial $0$s is $p\cdot n$. If $p\ll1/n$, then with high probability there is a single $0$ initially and the first resampling will fix it, so the linear term in the expected number of resamplings is $np$, therefore $\forall n\geq 3$, $a^{(n)}_1=1$. 
	
	For the second order coefficients it is a bit harder to argue, but one can use the structure of $M_{(n)}$ to come up with a combinatorial proof. To see this, first assume we have a vector $e_b$ having a single non-zero, unit element indexed with bitstring $b$.
	Observe that $e_bM_{(n)}$ is a vector containing polynomial entries, such that the only indices $b'$ which have a non-zero constant term must have $|b'|\geq|b|+1$, since if a resampling produces a $0$ entry it also introduces a $p$ factor. Using this observation one can see that the second order term can be red off from $\rho M_{(n)}\mathbbm{1}+\rho M_{(n)}^2\mathbbm{1}$,
	which happens to be $2n$. (Note that it is already a bit surprising, form the steps of the combinatorial proof one would expect $n^2$ terms appearing, but they just happen to cancel each other.) Using similar logic one should be able to prove the claim for $k=3$, but for larger $k$s it seems to quickly get more involved.
	
	The question is how could we prove the statements \ref{it:pos}-\ref{it:lim} for a general $k$?
	
    \appendix
    
    \section{Lower bound on $R^{(n)}(p)$}
    Proof that \ref{it:pos} and \ref{it:lim} imply that for any fixed $p>p_c$ we have $R^{(n)}(p)\in\Omega\left(\left(\frac{p}{p_c}\right)^{n/2}\right)$. 
    
    By definition of $p_c = \lim_{k\to\infty} 1\left/ \sqrt[k]{a_k^{(k+1)}} \right.$ we know that for any $\epsilon$ there exists a $k_\epsilon$ such that for all $k\geq k_\epsilon$ we have $a_k^{(k+1)}\geq (p_c + \epsilon)^{-k}$. Now note that $R^{(n)}(p) \geq a_{n-1}^{(n)}p^{n-1}$ since all terms of the power series are positive, so for $n\geq k_\epsilon$ we have $R^{(n)}(p)\geq (p_c +\epsilon)^{-(n-1)}p^{n-1}$. Note that
    \begin{align*}
    	R^{(n)}(p)\geq(p_c+\epsilon)^{-(n-1)}p^{n-1}=\left(\frac{p}{p_c+\epsilon}\right)^{n-1} \geq \left(\frac{p}{p_c}\right)^{\frac{n-1}{2}},
    \end{align*}
    where the last inequality holds for $\epsilon\leq\sqrt{p_c}(\sqrt{p}-\sqrt{p_c})$.
    
    \section{Calculating the coefficients $a_k^{(n)}$}
    Let $\rho'\in\mathbb{R}[p]^{2^n}$ be a vector of polynomials, and let $\text{rank}(\rho')$ be defined in the following way: 
    $$\text{rank}(\rho'):=\min_{b\in\{0,1\}^n}\left( |b|+ \text{maximal } k\in\mathbb{N} \text{ such that } p^k \text{ divides } \rho'_b\right).$$
	Clearly for any $\rho'$ we have that $\text{rank}(\rho' M_{(n)})\geq \text{rank}(\rho') + 1$. Another observation is, that all elements of $\rho'$ are divisible by $p^{\text{rank}(\rho')-n}$.
    We observe that for the initial $\rho$ we have that $\text{rank}(\rho)=n$, therefore $\text{rank}(\rho*(M_{(n)}^k))\geq n+k$, and so $\rho*(M_{(n)}^k)*\mathbbm{1}$ is obviously divisible by $p^{k}$. This implies that $a_k^{(n)}$ can be calculated by only looking at $\rho*(M_{(n)}^1)*\mathbbm{1}, \ldots, \rho*(M_{(n)}^k)*\mathbbm{1}$.
    
\newpage
\section{Quasiprobability method}
Let us first introduce notation for paths of the Markov Chain
\begin{definition}[Paths]
    We define a \emph{path} of the Markov Chain as a sequence of states and resampling choices $\xi=((b_0,r_0),(b_1,r_1),...,(b_k,r_k)) \in (\{0,1\}^n\times[n])^k$ indicating that at time $t$ Markov Chain was in state $b_t\in\{0,1\}^n$ and then resampled site $r_t$. We denote by $|\xi|$ the length $k$ of such a path, i.e. the number of resamples that happened, and by $\mathbb{P}[\xi]$ the probability associated to this path.
    We denote by $\paths{b}$ the set of all valid paths $\xi$ that start in state $b$ and end in state $\mathbf{1} := 1^n$.
\end{definition}
We can write the expected number of resamplings per site $R^{(n)}(p)$ as
\begin{align}
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1\}^{n}} \rho_b \; R_b(p) \label{eq:originalsum} ,
\end{align}
where $R_b(p)$ is the expected number of resamplings when starting from configuration $b$
\begin{align*}
	R_b(p) &= \sum_{\xi \in \paths{b}} \mathbb{P}[\xi] \cdot |\xi| .
\end{align*}

We consider $R^{(n)}(p)$ as a power series in $p$ and show that many terms in (\ref{eq:originalsum}) cancel out if we only consider the series up to some finite order $p^k$. The main idea is that if a path samples a $0$ then $\mathbb{P}[\xi]$ gains a factor $p$ so paths that contribute to $p^k$ can't be arbitrarily long.\\

To see this, we split the sum in (\ref{eq:originalsum}) into parts that will later cancel out. The initial probabilities $\rho_b$ contain a factor $p$ for every $0$ and a factor $(1-p)$ for every $1$. When expanding this product of $p$s and $(1-p)$s, we see that the $1$s contribute a factor $1$ and a factor $(-p)$ and the $0$s only give a factor $p$. We want to expand this product explicitly and therefore we no longer consider bitstrings $b\in\{0,1\}^n$ but bitstrings $b\in\{0,1,1'\}^n$. We view this as follows: every site can have one of $\{0,1,1'\}$ with `probabilities' $p$, $1$ and $-p$ respectively. A configuration $b=101'1'101'$ now has probability $\rho_{b} = 1\cdot p\cdot(-p)\cdot(-p)\cdot 1\cdot p\cdot(-p) = -p^5$ in the starting state $\rho$. It should not be hard to see that we have
\begin{align*}
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_{b} \; R_{\bar{b}}(p) ,
\end{align*}
where $\bar{b}$ is the bitstring obtained by changing every $1'$ in it back to a $1$. It is simply the same sum as (\ref{eq:originalsum}) but now every factor $(1-p)$ is explicitly split into $1$ and $(-p)$.
   
Some terminology: for any configuration we call a $0$ a \emph{particle} (probability $p$) and a $1'$ an \emph{antiparticle} (probability $-p$). We use the word \emph{slot} for a position that is occupied by either a paritcle or antiparticle ($0$ or $1'$). In the initial state, the probability of a configuration is given by $\pm p^{\mathrm{\#slots}}$ where the $\pm$ sign depends on the parity of the number of antiparticles.
    
We can further rewrite the sum over $b\in\{0,1,1'\}^n$ as a sum over all slot configurations $C\subseteq[n]$ and over all possible fillings of these slots.
\begin{align*}
	R^{(n)}(p) &= \frac{1}{n} \sum_{C\subseteq[n]} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
\end{align*}
where $C(f)\in\{0,1,1'\}^n$ denotes a configuration with slots on the sites $C$ filled with (anti)particles described by $f$. The non-slot positions are filled with $1$s.

\begin{definition}[Diameter and gaps] \label{def:diameter} \label{def:gaps}
    For a subset $C\subseteq[n]$, we define the \emph{diameter} $\diam{C}$ to be the minimum size of an integer interval $I$ containing $C$. Here we consider both $C$ and the interval modulo $n$. In other words $\diam{C} = \min\{ j \vert \exists i : C\subseteq [i,i+j-1] \}$. We define the \emph{gaps} of $C$, as $I\setminus C$ and denote this by $\gaps{C}$. Note that $\diam{C} = |C| + |\gaps{C}|$.  Define $\maxgap{C}$ as the size of the largest connected component of $\gaps{C}$. Figure \ref{fig:diametergap} illustrates these concepts with a picture. 
\end{definition}
\begin{figure}
	\begin{center}
    	\includegraphics{diagram_gap.pdf}
    \end{center}
    \caption{\label{fig:diametergap} Illustration of Definition \ref{def:diameter}. A set $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 positions is shown by the red dots. The smallest interval containing $C$ is $[1,9]$, so the diameter is $\diam{C}=9$. The blue squares denote the set $\gaps{C} = \{3,5,6,8\}$. The dotted line at the top depicts the rest of the circle which may be much larger. The largest gap of $C$ is $\maxgap{C}=2$ which is the largest connected component of $\gaps{C}$.}
\end{figure}

\begin{claim}[Strong cancellation claim] \label{claim:strongcancel}
	The lowest order term in
    \begin{align*}
        \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
    \end{align*}
	is $p^{\diam{C}}$ when $n$ is large enough. All lower order terms cancel out.
\end{claim}

Example: for $C_0=\{1,2,4,7,9\}$ (the configuration shown in Figure \ref{fig:diametergap}) we computed the quantity up to order $p^{20}$ in an infinite system:
\begin{align*}
	\sum_{f\in\{0,1'\}^{|C_0|}} \rho_{C_0(f)} R_{C_0(f)} &= 0.0240278 p^{9} + 0.235129 p^{10} + 1.24067 p^{11} + 4.71825 p^{12} \\
    &\quad + 14.5555 p^{13} + 38.8307 p^{14} + 93.2179 p^{15} + 206.837 p^{16}\\
    &\quad + 432.302 p^{17} + 862.926 p^{18} + 1662.05 p^{19} + 3112.9 p^{20} + \mathcal{O}(p^{21})
\end{align*}
and indeed the lowest order is $\diam{C}=9$.

~

A weaker version of the claim is that if $C$ contains a gap of size $k$, then the sum is zero up to and including order $p^{|C|+k-1}$.
\begin{claim}[Weak cancellation claim] \label{claim:weakcancel}
	For $C\subseteq[n]$ a configuration of slot positions, the lowest order term in
    \begin{align*}
        \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
    \end{align*}
    is at least $p^{|C|+\maxgap{C}}$ when $n$ is large enough. All lower order terms cancel out.
\end{claim}
This weaker version would imply \ref{it:const} but for $\mathcal{O}(k^2)$ as opposed to $k+1$.

\newpage
The reason that claim \ref{claim:strongcancel} would prove \ref{it:const} is the following: to know the value of $a_k^{(n)}$, for any $n\geq k+1$ it is enough to look at configurations $C$ with diameter at most $k$, since larger configurations do not contribute to $a_k^{(n)}$.
For a starting state $b\in\{0,1\}^n$ that \emph{does} give a nonzero contribution, you can take that same starting configuration and translate it to get $n$ other configurations that give the same contribution. (An exception is a starting state like $1010101010...$ which you can only translate twice, but we only have to consider configurations with small diameter, in which case you can make exactly $n$ translations.)
Therefore the coefficient in the expected number of resamplings is a multiple of $n$ which Andr\'as already divided out in the definition of $R^{(n)}(p)$. To show \ref{it:const} we argue that this is the \emph{only} dependency on $n$. This is because there are only finitely many (depending on $k$ but not on $n$) configurations where the $k$ slots are nearby regardless of the value of $n$. So there are only finitely many nonzero contributions after translation symmetry was taken out. For example, when considering all starting configurations with 5 slots one might think there are $\binom{n}{5}$ configurations to consider which would be a dependency on $n$ (more than only the translation symmetry). But since most of these configurations have a diameter larger than $k$, they do not contribute to $a_k$. Only finitely many do and that does not depend on $n$.

~

Section \ref{sec:computerb} shows how to compute $R_b$ (this is not relevant for showing the claim) and the section after that shows how to prove the weaker claim.

\newpage
\subsection{Computation of $R_b$} \label{sec:computerb}

By $R_{101}$ we denote $R_b(p)$ for a $b$ that consists of only $1$s except for a single zero. We compute $R_{101}$ up to second order in $p$. This requires the following transitions.
\begin{align*}
    \framebox{$1 0 1$} &\to \framebox{$1 1 1$} & (1-p)^3 = 1-3p+3p^2-p^3\\
    \hline
    \framebox{$1 0 1$} &\to
        \begin{cases}
            \framebox{$0 1 1$}\\
            \framebox{$1 0 1$}\\
            \framebox{$1 1 0$}
        \end{cases}
        & 3p(1-p)^2 = 3p-6p^2+3p^3\\
    \hline
    \framebox{$1 0 1$} &\to \framebox{$0 1 0$} & p^2(1-p) = p^2-p^3\\
    \framebox{$1 0 1$} &\to
        \begin{cases}
            \framebox{$1 0 0$}\\
            \framebox{$0 0 1$}
        \end{cases}
        & 2p^2(1-p) = 2p^2 - 2p^3\\
    \hline
    \framebox{$1 0 1$} &\to \framebox{$0 0 0$} & p^3
\end{align*}
With this we can write a recursive formula for the expected number of resamples from $101$:
\begin{align*}
    R_{101} &= (1-3p+3p^2 - p^3)(1) + (3p -6p^2 +3p^3) (1+R_{101}) \\
            &\quad + (p^2 - p^3) (1+R_{10101}) + (2p^2-2p^3) (1+R_{1001}) + p^3(1+R_{10001}) \\
			&= 1 + 3 p + 7 p^2 + 14.6667 p^3 + 29 p^4 + 55.2222 p^5 + 102.444 p^6 + 186.36 p^7 \\
            &\quad + 333.906 p^8 + 590.997 p^9 + 1035.58 p^{10} + 1799.39 p^{11} + 3104.2 p^{12} \\
            &\quad+ 5322.18 p^{13} + 9075.83 p^{14} + 15403.6 p^{15} + 26033.4 p^{16} + 43833.5 p^{17} \\
            &\quad+ 73555.2 p^{18} + 123053 p^{19} + 205290 p^{20} + 341620 p^{21} + 567161 p^{22} \\
            &\quad+ 939693 p^{23} + 1.5537\cdot10^{6} p^{24} + 2.56158\cdot10^{6} p^{25} + \mathcal{O}(p^{26})
\end{align*}
where the recursion steps were done with a computer for an infinite line (or a cirlce where $n$ is assumed to be much larger than the largest power of $p$ considered).

Note: in the first line at the second term it uses that with probability $(3p-6p^2 + 3p^3)$ the state goes to $\framebox{$101$}$ and then the expected number of resamplings is $1+R_{101}$. Note that the actual term in the recursive formula should be
$$(3p-6p^2+3p^3)\cdot\left( \sum_{\xi\in\paths{101}} \mathbb{P}[\xi] \cdot \left( 1 + |\xi|\right) \right) = (3p-6p^2+3p^3)\left( p_\mathrm{tot} + R_{101} \right)$$
where $p_\mathrm{tot} := \sum_{\xi\in\paths{b}} \mathbb{P}[\xi]$. However, since the state space is finite (for finite $n$) and there is always a non-vanishing probability to go to $\mathbf{1}$, we know that $p_\mathrm{tot}=1$, i.e. the process terminates almost surely.

\newpage
\subsection{Weak cancellation proof}

Here we prove claim \ref{claim:weakcancel}, the weaker version of the claim. We require the following definition
\begin{definition}[Path independence] \label{def:independence}
	We say two paths $\xi_i\in\paths{b_i}$ ($i=1,2$) of the Markov Chain are \emph{independent} if $\xi_1$ never resamples a site that was ever zero in $\xi_2$ and the other way around. It is allowed that $\xi_1$ resamples a $1$ to a $1$ that was also resampled from $1$ to $1$ by $\xi_2$ and vice versa. If the paths are not independent then we call the paths \emph{dependent}.
\end{definition}
\begin{definition}[Path independence - alternative] \label{def:independence2}
    Equivalently, on the infinite line $\xi_1$ and $\xi_2$ are independent if there is a site `inbetween' them that was never zero in $\xi_1$ and never zero in $\xi_2$. On the circle $\xi_1$ and $\xi_2$ are independent if there are \emph{two} sites inbetween them that are never zero.
\end{definition}
\begin{claim}[Sum of expectation values] \label{claim:expectationsum}
When $b=b_1\land b_2\in\{0,1\}^n$ is a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes with $k$ $1$s inbetween the groups, then we have $R_b(p) = R_{b_1}(p) + R_{b_2}(p) + \mathcal{O}(p^{k})$ where $b_1$ and $b_2$ are the configurations where only one of the groups is present and the other group has been replaced by $1$s. To be precise, the sums agree up to and including order $p^{k-1}$.
\end{claim}
\textbf{Example}: For $b_1 = 0111111$ and $b_2 = 1111010$ we have $b=0111010$ and $k=3$. The claim says that the expected time to reach $\mathbf{1}$ from $b$ is the time to make the first group $1$ plus the time to make the second group $1$, as if they are independent. Simulation shows that
\begin{align*}
    R_{b_1} &= 1 + 3p + 7p^2 + 14.67p^3 + 29p^4 + \mathcal{O}(p^5)\\
    R_{b_2} &= 2 + 5p + 10.67p^2 + 21.11p^3+40.26p^4 + \mathcal{O}(p^5)\\
    R_{b} &= 3 + 8p + 17.67p^2 + 34.78p^3+65.27p^4 + \mathcal{O}(p^5)\\
    R_{b_1} + R_{b_2} &= 3 + 8p + 17.67p^2+35.78p^3 + 69.26p^4 +\mathcal{O}(p^5)
\end{align*}
and indeed the sums agree up to order $p^{k-1}=p^2$. When going up to order $p^{k}$ or higher, there will be terms where the groups interfere so they are no longer independent.

~

\begin{proof}
    Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence} or \ref{def:independence2}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. Point $(i,j)$ in the grid indicates that $i$ steps of $\xi_1$ have been done and $j$ steps of $\xi_2$ have been done. At every point (except the top and right edges of the grid) one has to choose between doing a step of $\xi_1$ or a step of $\xi_2$. The number of zeroes in the current state determine the probabilities with which this happens (beside the probabilities associated to the two original paths already). The grid below shows that at a certain point one can choose to do a step of $\xi_1$ with probability $p_i$ or a step of $\xi_2$ with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. The weight of such a new path $\xi\in\paths{b_1\land b_2}$ is $p_\mathrm{grid}\cdot\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$ where $p_\mathrm{grid}$ is the weight of the path in the diagram. By induction one can show that the sum over the $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different terms $p_\mathrm{grid}$ is $1$.
\begin{center}
\includegraphics{diagram_paths.pdf}
\end{center}
 Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by
\[
\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot(|\xi_1|+|\xi_2|) = \mathbb{P}[\xi_2]\cdot\mathbb{P}[\xi_1]\cdot|\xi_1| \;\; + \;\; \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot|\xi_2|.
\]
Ideally we would now like to sum this expression over all possible paths $\xi_1,\xi_2$ and use $p_\mathrm{tot}:=\sum_{\xi\in\paths{b_i}} \mathbb{P}[\xi] = 1$ (which also holds up to arbitrary order in $p$). The above expression would then become $R_{b_1} + R_{b_2}$. However, not all paths in the sum would satisfy the independence condition so it seems we can't do this. We now argue that it works up to order $p^{k-1}$.
For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits into two independent paths $\xi_1,\xi_2$ as above, \emph{or} it does not. In the latter case, when $\xi$ can not be split like that, we know $\mathbb{P}[\xi]$ contains a power $p^k$ or higher because there is a gap of size $k$  and the paths must have moved at least $k$ times `towards each other' (for example one path moves $m$ times to the right and the other path moves $k-m$ times to the left). So the total weight of such a combined path is at least order $p^k$. Therefore we have
\[
	R_{b_1\land b_2} = \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2]|\xi_2| + \sum_{\mathclap{\xi\;\mathrm{dependent}}} \mathbb{P}[\xi]|\xi|.
\]
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
\[
	\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
    = \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
\]
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have 
\begin{align*}
    \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
    &= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
    &= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
    &= R_{b_1} + \mathcal{O}(p^k)
\end{align*}
we can do the same with the second term and this proves the claim.
\end{proof}

~\\
\textbf{Proof of claim \ref{claim:weakcancel}}: We can assume $C$ consists of a group on the left with $l$ slots and a group on the right with $r$ slots (so $r+l=|C|$), with a gap of size $k=\mathrm{gap}(C)$ between these groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $f=(a,b)\in\{0,1'\}^{l+r}$. The initial probability of such a state $C(a,b)$ is $\rho_{C(a,b)} = (-1)^{|a|+|b|} p^{r+l}$ and by claim \ref{claim:expectationsum} we know $R_{C(a,b)} = R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k)$ where $C(a)$ indicates that only the left slots have been filled by $a$ and the other slots are filled with $1$s. The total contribution of these configurations is therefore
\begin{align*}
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}
    &= \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k) \right) \\
    &=\;\;\; p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_{C(a)} \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\
    &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_{C(b)} \sum_{a\in\{0,1'\}^l} (-1)^{|a|}
        + \mathcal{O}(p^{r+l+k})\\
    &= 0 + \mathcal{O}(p^{|C|+k})
\end{align*}
where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$.

\newpage
\subsection{Proving the strong cancellation claim}
It is useful to introduce some new notation. Note that an \emph{event} is a subset of all possible paths of the Markov Chain.
\begin{definition}[Events conditioned on starting state] \label{def:conditionedevents}
    For any state $b\in\{0,1\}^n$, define $\textsc{start}(b)$ as the event that the starting state of the chain is the state $b$. For any event $A$, define
    \begin{align*}
        \mathbb{P}_b(A) &= \mathbb{P}(A \;|\; \textsc{start}(b)) \\
        R_{b,A} &= \mathbb{E}( \#resamples \;|\; A \; , \; \textsc{start}(b))
    \end{align*}
\end{definition}
\begin{definition}[Vertex visiting event] \label{def:visitingResamplings}
    Denote by $\mathrm{Z}^{(j)}$ the event that site $j$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(j)}$, i.e. the event that site $j$ does \emph{not} become zero before it terminates. Furthermore define $\mathrm{NZ}^{(j_1,j_2)} := \mathrm{NZ}^{(j_1)} \cap \mathrm{NZ}^{(j_2)}$, i.e. the event that \emph{both} $j_1$ and $j_2$ do not become zero before termination.
\end{definition}
\begin{figure}
	\begin{center}
    	\includegraphics{diagram_groups.pdf}
    \end{center}
    \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $j_1,j_2$.}
\end{figure}
\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $j_1,j_2$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
    \begin{align*}
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)}, A_1, A_2)
        &=
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)}, A_1)
        \; \cdot \;
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)}, A_2) \\
        \mathbb{P}_b(A_1, A_2 \mid \mathrm{NZ}^{(j_1,j_2)})
        &=
        \mathbb{P}_{b_1}(A_1 \mid \mathrm{NZ}^{(j_1,j_2)})
        \; \cdot \;
        \mathbb{P}_{b_2}(A_2 \mid \mathrm{NZ}^{(j_1,j_2)}) \\
        R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
        &=
        R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1}
        \; + \;
        R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2}
    \end{align*}
    up to any order in $p$.
\end{lemma}
The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the circle are independent. 

\begin{proof}
    Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if $r_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Note that now $\xi_1$ is a path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.  Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ by simply concatenating the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of concatenating the resamplings in $\xi_1$ and $\xi_2$. However, all these paths have smaller weight, and by the same reasoning as in the proof of claim \ref{claim:expectationsum} these weights sum to exactly $1$, so we obtain
    \begin{align*}
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2)
        &= \sum_{\substack{\xi\in\paths{b} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] \\
        &= \sum_{\substack{\xi_1\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1}} \;\;
          \sum_{\substack{\xi_2\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
        \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2] \\
        &=
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1)
        \; \cdot \;
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2).
    \end{align*}
    The second equality follows directly from $\mathbb{P}(A\mid B)=\mathbb{P}(A,B)/\mathbb{P}(B)$ and setting $A_1,A_2$ to the always-true event.
    For the third equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
    \begin{align*}
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2) R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
        &:= \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1}}
          \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
        \mathbb{P}[\xi_1]\mathbb{P}[\xi_2] (|\xi_1| + |\xi_2|) \\
        &=
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1} \\
        &\quad +
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2} .
    \end{align*}
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{(j_1,j_2)},A_1,A_2)$ and using the first equality gives the desired result.
\end{proof}

\begin{comment}
TEST: Although a proof of claim \ref{claim:expectationsum} was already given, I'm trying to prove it in an alternate way using claim \ref{claim:eventindependence}.

~

Assume that $b_1$ ranges up to site $0$, the gap ranges from sites $1,...,k$ and $b_2$ ranges from site $k+1$ and onwards. For $j=1,...,k$ define the ``partial-zeros'' event $\mathrm{PZ}_j = \mathrm{Z}_1 \cap \mathrm{Z}_2 \cap ... \cap \mathrm{Z}_{j-1} \cap \mathrm{NZ}_j$ i.e. the first $j-1$ sites of the gap become zero and site $j$ does not become zero. Also define the ``all-zeros'' event $\mathrm{AZ} = \mathrm{Z}_1 \cap ... \cap \mathrm{Z}_k$, where all sites of the gap become zero. Note that these events partition the space, so we have for all $b$ that $\sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) = 1 - \mathbb{P}_b(\mathrm{AZ}) = 1 - \mathcal{O}(p^k)$.

~

Furthermore, if site $j$ becomes zero when starting from $b_1$ it means all sites to the left of $j$ become zero as well. Similarly, from $b_2$ it implies all the sites to the right of $j$ become zero.
Because of that, we have
\begin{align*}
    \mathbb{P}_{b_1}(\mathrm{PZ}_j) &= \mathbb{P}_{b_1}(\mathrm{Z}_{j-1} \cap \mathrm{NZ}_j) = \mathcal{O}(p^{j-1}) \\
    \mathbb{P}_{b_2}(\mathrm{NZ}_j) &= 1 - \mathbb{P}_{b_2}(\mathrm{Z}_j) = 1 - \mathcal{O}(p^{k-j+1})
\end{align*}
Following the proof of claim \ref{claim:eventindependence} we also have
\begin{align*}
    \mathbb{P}_b(\mathrm{PZ}_{j})
    &=
    \mathbb{P}_{b_1}(\mathrm{PZ}_{j})
    \; \cdot \;
    \mathbb{P}_{b_2}(\mathrm{NZ}_{j}) \\
    R_{b,\mathrm{PZ}_{j}}
    &=
    R_{b_1,\mathrm{PZ}_{j}}
    \; + \;
    R_{b_2,\mathrm{NZ}_{j}}
\end{align*}


Now observe that
\begin{align*}
    R_b &= \sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) R_{b,\mathrm{PZ}_j} + \mathbb{P}_b(\mathrm{AZ}) R_{b,\mathrm{AZ}} \\
        &= \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{NZ}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
        + \mathcal{O}(p^k) \\
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
        - \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{Z}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
        + \mathcal{O}(p^k) \\
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
        + \mathcal{O}(p^k) \\
        &= R_{b_1}
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
        + \mathcal{O}(p^k) \\
        &\overset{???}{=} R_{b_1} + R_{b_2} + \mathcal{O}(p^k)
\end{align*}
\end{comment}

Consider the chain (instead of the cycle) for simplicity with vertices identified by $\mathbb{Z}$.
\begin{definition}[Starting state dependent probability distribution.]
	Let $I\subset\mathbb{Z}$ be a finite set of vertices.
    Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. Define $P_I(A)=P_{b_I}(A)$ where the latter is defined in Definition \ref{def:conditionedevents}, i.e. the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. 
\end{definition}

The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
\begin{lemma}\label{lemma:probIndep}
	Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
    Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. These definitions are illustraded in Figure \ref{fig:lemmaillustration}.
	Then $P_{I}(Z^{(0)})=P_{I'}(Z^{(0)}) + O(p^{I_{\max}+1-|I|})$.
\end{lemma}
\begin{proof}
\begin{figure}
	\begin{center}
    	\includegraphics{diagram_proborders.pdf}
    \end{center}
    \caption{\label{fig:lemmaillustration} Illustration of setup of Lemma \ref{lemma:probIndep}.}
\end{figure}
	The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples vertex $0$ to zero must produce at least $I_{\max}$ zeroes in-between.
	
    Induction step: For an event $A$ and $k>0$ let us denote $A_k = A\cap\left(\cap_{j=0}^{k-1} \mathrm{Z}^{(j)}\right)\cap \mathrm{NZ}^{(k)}$, i.e. $A_k$ is the event $A$ \emph{and} ``Each vertex in $0,1,2,\ldots, k-1$ becomes $0$ at some point before termination (either by resampling or initialisation), but vertex $k$ does not''. Observe that these events form a partition, so $Z^{(0)}=\dot{\bigcup}_{k=1}^{\infty}Z^{(0)}_k$.
    Let $I_{<k}:=I\cap[1,k-1]$ and similarly $I_{>k}:=I\setminus[1,k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ (note that $I_{><} = \gaps{I}$ as shown in Figure \ref{fig:diametergap}). Suppose we have proven the claim up to $|I|-1$, then the induction step can be shown by
	\begin{align*}
		P_{I}(Z^{(0)})
		&=\sum_{k=1}^{\infty}P(Z^{(0)}_k) \tag{the events are a partition}\\
        &=\sum_{k\in \mathbb{N}\setminus I}P(Z^{(0)}_k) \tag{$\mathbb{P}(A_k)=0$ for $k\in I$}\\
        &=\sum_{k\in\mathbb{N}\setminus I}P_{I_{<k}}(Z^{(0)}_k)\cdot P_{I_{>k}}(\mathrm{NZ}^{(k)}) \tag{by Claim~\ref{claim:eventindependence}}\\
        &=\sum_{k\in I_{><}}P_{I_{<k}}(Z^{(0)}_k)\cdot P_{I_{>k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|})
		\tag{$k<I_{\min}\Rightarrow P_{I_{<k}}(Z^{(0)}_k)=0$}\\
        &=\sum_{k\in I_{><}}P_{I'_{<k}}(Z^{(0)}_k)\cdot P_{I_{>k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|})	
		\tag{$k< I_{\max}\Rightarrow I_{<k}=I'_{<k}$}\\
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(Z^{(0)}_k)\cdot
        \left(P_{I'_{>k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{by induction, since for $k>I_{\min}$ we have $|I_{<k}|<|I|$}\\
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(Z^{(0)}_k)\cdot
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	
		\tag{as $P_{I'_{<k}}(Z^{(0)}_k)=\mathcal{O}(p^{k-|I'_{<k}|})$}\\
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I'_{<k}}(Z^{(0)}_k)\cdot
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\
		&=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{<k}}(Z^{(0)}_k)\cdot
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{$k=I_{\max}\Rightarrow P_{I'_{<k}}(Z^{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
		&=P_{I'}(Z^{(0)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{analogously to the beginning}			
	\end{align*}
\end{proof}

	The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling. 
	
	Also this claim finally ``sees'' how many empty places are between slots. These properties make it possible to use this lemma to prove the sought linear bound. We show it for the infinite chain, but with a little care it should also translate to the circle.

~

Here, I (Tom) tried to set do the same Lemma but for the circle instead of the infinite chain.
\begin{lemma}[Startingstate dependence] \label{lemma:probIndepCircle}
    Let $d(a,b)$ be the distance between $a,b\in[n]$ on the circle, so $d(a,b)=\min(|a-b| , n-|a-b|)$. Let $\dist{s}(a,b)$ be the distance between $a,b$ when taking the path that does \emph{not} cross $s$. Let $I\subseteq [n]$ be a non-empty set of vertices. Let $i_* \in I$ and define $I' = I \setminus \{i_*\}$. Let $j,s\notin I$, with $j\neq s$ be any vertices not in $I$.
    Then
    \begin{align*}
        \P_{I}(\Z{j})        &= \P_{I'}(\Z{j})        + \mathcal{O}(p^{d(i_*,j) + 1 - |I|}) \\
        \P_{I}(\Z{j},\NZ{s}) &= \P_{I'}(\Z{j},\NZ{s}) + \mathcal{O}(p^{\min\left( \dist{s}(i_*,j), \dist{j}(i_*,s) \right) + 1 - |I|}) .
    \end{align*}
\end{lemma}
\begin{proof}
    Without loss of generality, we can assume that $j=0$ and  $0 < i_* < s < n$ (because we can shift $j$ to $0$ and switch the direction to get the correct ordering). Therefore, we have to prove:
    \begin{align*}
        \P_{I}(\Z{0})        &= \P_{I'}(\Z{0})        + \mathcal{O}(p^{d(i_*,0) + 1 - |I|}) \\
        \P_{I}(\Z{0},\NZ{s}) &= \P_{I'}(\Z{0},\NZ{s}) + \mathcal{O}(p^{\min\left( i_*, s-i_* \right) + 1 - |I|}) .
    \end{align*}
    We will prove both statements inductively on $|I|$. For $|I|=1$ we have $I=\{i_*\}$ and $I'=\emptyset$, so $\P_{I'}(\Z{0})=0$ and
    \begin{align*}
        \P_{I}(\Z{0})        &= \mathcal{O}(p^{d(i_*,0)}) \\
        \P_{I}(\Z{0},\NZ{s}) &= \mathcal{O}(p^{i_*}) = \mathcal{O}(p^{\min\left( i_*, s-i_* \right)})
    \end{align*}
    simply because a chain of zeroes has to be formed between $i_*$ and $0$, and in the second case this chain can not go through $s$ so the shortest path has length $i_*$. Now assume both statements hold up to $|I|-1$, then we prove them both for sets of size $|I|$.

    When we refer to an interval $[a,b]$ on the circle we could be referring to two possible intervals because of the periodicity of the circle. Define $[a,b]_j$ as the interval with vertex $j$ on the \emph{inside}. Furthermore by $-a$ we mean the vertex $n-a$, as one would expect modulo $n$.

 We will now consider intervals around vertex 0.
    For $l,r\geq 1$ and $l+r\leq n$, define the event ``zeroes patch'' $\mathrm{ZP}^{[-l,r]_0}$ as the event of getting zeroes inside the interval $[-l,r]_0$ but not on the boundary, i.e.
    $$\mathrm{ZP}^{[-l,r]_0} = \NZ{-l} \cap \Z{-l+1} \cap \cdots \cap \Z{0} \cap \cdots \cap \Z{r-1} \cap \NZ{r}$$
    Note that there are $r+l-1$ `zeroes' in this event, so $\P_{J}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{r+l-1-|J|})$ for $J\subseteq[-l,r]_0$ is a lower bound on the order of $p$.\\
    Claim:
    \begin{align*}
        \P_{I}(\mathrm{ZP}^{[-l,r]_0}) &= \P_{I'}(\mathrm{ZP}^{[-l,r]_0})
        + \mathcal{O}(p^{d(i_*,0)+1-|I|})
    \end{align*}
    If $r\geq i_*$ or $l\geq n-i_*$ then $\P_{I}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$ and also $\P_{I'}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$ so then the claim holds.
    If $-l\in I$ or $r\in I$ (and $-l,r$ are both not $i_*$ because of the previous point) then the probability of $\mathrm{ZP}^{[-l,r]_0}$ is zero for both $I$ and $I'$ so the claim holds.
    If $[-l,r]_0$ has no overlap with $I$ then both sides are also zero so it also holds. We are left with the case where: $-l,r,\notin I$ and $[-l,r]_0 \cap I \neq \emptyset$ and $i_*\notin[-l,r]_0$.
    The following diagram illustrates the situation
    \begin{center}
        \includegraphics{diagram_circle_lemma.pdf}
    \end{center}
    Note that by Claim~\ref{claim:eventindependence} we have
    \begin{align*}
        \P_{I}(\mathrm{ZP}^{[-l,r]_0}) = \P_{I \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0}) \;\cdot\; \P_{I\setminus [-l,r]_0}(\NZ{-l},\NZ{r})
    \end{align*}
    We have $i_*\in I \setminus[-l,r]_0$, and $I\cap[-l,r]_0 = I' \cap [-l,r]_0$. Define $J=I\setminus[-l,r]_0$ and $J'=I'\setminus[-l,r]_0$. We have $|J|<|I|$ so we can apply the induction hypothesis to $J$:
    \begin{align*}
        \P_{J}(\NZ{-l},\NZ{r})
        &=
        1
        - \P_{J}(\Z{-l},\NZ{r})
        - \P_{J}(\Z{r})
        \tag{partition of all events} \\
        &=
        1
        - \P_{J'}(\Z{-l},\NZ{r})
        - \P_{J'}(\Z{r}) \\
        &\quad + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l), \dist{-l}(i_*,r) \right) +1-|J|})
        + \mathcal{O}(p^{d(i_*,r)+1-|J|}) \\
        &=
        \P_{J'}(\NZ{-l},\NZ{b})
        + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+1-|J|})
    \end{align*}
    Note that the event $\mathrm{ZP}^{[-l,r]_0}$ contains $l+r-1$ zeroes, so $\P_{I \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{l+r-1-|I\cap[-l,r]_0|})$. This means
    \begin{align*}
        \P_{I}(\mathrm{ZP}^{[-l,r]_0})
        &= \P_{I' \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0})
        \left( \P_{I' \setminus [-l,r]_0}(\NZ{a},\NZ{b}) + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+1-|J|}) \right) \\
        &= \P_{I' \cap [-l,r]_0}(\mathrm{ZP}^{[-l,r]_0}) \;\cdot\; \P_{I'\setminus [-l,r]_0}(\NZ{a},\NZ{b}) \\
        &\qquad + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+1-|J| + l+r-1-|I\cap[-l,r]_0|}) \\
        &= \P_{I'}(\mathrm{ZP}^{[-l,r]_0})
        + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+l+r-|I|})
    \end{align*}
    Where we used Claim~\ref{claim:eventindependence} again.
    Case separation shows that
    $$\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right) + l +r \geq d(i_*,0) + 1$$
    for $l,r\geq 1$ which proves the claim.

    The first equality that we have to prove now follows from the fact that the ``zeroes patch'' events are a partition of $\Z{0}$:
    \begin{align*}
        \P_{I}(\Z{0})
        &=\sum_{\substack{l,r\geq 1\\l+r\leq n}}
        \P_I(\mathrm{ZP}^{[-l,r]_0})
        \tag{the events are a partition of $\Z{0}$}\\
        &=\sum_{\substack{l,r\geq 1\\l+r\leq n}}
        \P_{I'}(\mathrm{ZP}^{[-l,r]_0})
        + \mathcal{O}(p^{d(i_*,0)+1-|I|})
        \tag{by claim} \\
        &= \P_{I'}(\Z{0}) + \mathcal{O}(p^{d(i_*,0)+1-|I|})
    \end{align*}
    Similarly, we have
    \begin{align*}
        \P_{I}(\Z{0} , \NZ{s})
        &=\sum_{l=1}^{n-s}\sum_{r=1}^{s}
        \P_{I}(\mathrm{ZP}^{[-l,r]_0},\NZ{s})
        \tag{partition of $\Z{0}$}\\
        &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
        \P_{I}(\mathrm{ZP}^{[-l,r]_0},\NZ{s})
        +\mathcal{O}(p^{i_*+1-|I|}) \\
        &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
        \P_{I\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
        \P_{I\setminus [s,r]_0}(\NZ{r},\NZ{s})
        +\mathcal{O}(p^{i_*+1-|I|})
        \tag{Claim~\ref{claim:eventindependence}}\\
        &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
        \P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
        \P_{I\setminus [s,r]_0}(\NZ{r},\NZ{s})
        +\mathcal{O}(p^{i_*+1-|I|})
        \tag{$i_*\in I \setminus[s,r]_0$}\\
        &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
        \P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
        \P_{I'\setminus [s,r]_0}(\NZ{r},\NZ{s}) \\
        &\qquad +\mathcal{O}(p^{\min\left( \dist{r}(i_*,s) , d(i_*,r)\right)+l+r-|I|})
        +\mathcal{O}(p^{i_*+1-|I|})
        \tag{same argument as before}\\
        &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1}
        \P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot
        \P_{I'\setminus [s,r]_0}(\NZ{r},\NZ{s}) \\
        &\qquad
        +\mathcal{O}(p^{\min\left( i_* , s-i_* \right) +1-|I|})
        \tag{case separation}\\
        &= \P_{I'}(\Z{0} , \NZ{s})
        +\mathcal{O}(p^{\min\left( i_* , s-i_* \right) +1-|I|})
    \end{align*}
    This finishes the proof.
\end{proof}

\begin{definition}[Connected patches]
	Let $\mathcal{P}\subset 2^{\mathbb{Z}}$ be a finite system of finite subsets of $\mathbb{Z}$. We say that the patch set of a resample sequence is $\mathcal{P}$,
	if the connected components of the vertices that have ever become $0$ are exactly the elements of $\mathcal{P}$. We denote by $A^{(\mathcal{P})}$ the event that the set of patches is $\mathcal{P}$. For a patch $P$ let $A^{(P)}=\bigcup_{\mathcal{P}:P\in \mathcal{P}}A^{(\mathcal{P})}$.
\end{definition} 
Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \emph{exactly} $\mathcal{P}$ whereas $A^{(P)}$ is the event that one of the patches is equal to $P$ but there can be other patches as well.

\begin{definition}[Conditional expectations]
	Let $S\subset\mathbb{Z}$ be a finite slot configuration, and for $f\in\{0,1'\}^{|S|}$ let $I:=S(f)$ be the set of vertices filled with particles. 
	Then we define
	$$R_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}].$$
	For a patch set $\mathcal{P}$ and some $P\in\mathcal{P}$ we define
	$$R^{(\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}|A^{(\mathcal{P})}]$$	
	and 
	$$R^{(P,\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(\mathcal{P})}]$$		
	finally
	$$R^{(P)}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(P)}].$$	
\end{definition} 

    Similarly to Mario's proof I use the observation that 
    \begin{align*}
    R^{(n)} &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} R_{S(f)}\\
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)}
    \sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{(\mathcal{P})}) R^{(\mathcal{P})}_{S(f)} \\
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)}
    \sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{\mathcal{P}}) \sum_{P\in\mathcal{P}} R^{(P,\mathcal{P})}_{S(f)}\\
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} 
    \sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{\mathcal{P}}) \sum_{P\in\mathcal{P}} R^{(P)}_{S(f)\cap P}\tag{by Claim~\ref{claim:eventindependence}}\\ 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} 
    \sum_{P\text{ patch}} R^{(P)}_{S(f)\cap P}\sum_{\mathcal{P}:P\in\mathcal{P}}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\     
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
     \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{(P)}) \tag{by definition}\\        
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
    \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)\cap P}(A^{(P)})\mathbb{P}_{S(f)\cap \overline{P}}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}}) \tag{remember Definition~\ref{def:visitingResamplings} and use Claim~\ref{claim:eventindependence}}\\    
    &= \frac{1}{n}\sum_{S\subseteq [n]} \sum_{P\text{ patch}} \sum_{f_P\in\{0,1'\}^{|S\cap P|}}
    \rho_{S(f_P)} R^{(P)}_{S(f_P)} \mathbb{P}_{S(f_P)}(A^{(P)})
    \sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}}) \\   
	&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f_P\in\{0,1'\}^{|S\cap P|}}
	\rho_{S(f_P)}
        \sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathcal{O}(p^{|S_{><}|}) \tag{see below} \\
	&= \frac{1}{n}\sum_{S\subseteq [n]}\mathcal{O}(p^{|S|+|S_{><}|}).
    \end{align*}
\begin{figure}
	\begin{center}
    	\includegraphics{diagram_patches.pdf}
    \end{center}
    \caption{\label{fig:patches} Illustration of last steps of the proof.}
\end{figure}
    The penultimate inequality can be seen by case separation as follows: If $S\subseteq P$ then there is no splitting into $S\cap P$ and $S\setminus P$, and we already have $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{|S_{><}|})$ simply because the patch $P$ must be filled with zeroes that were not yet in $S$, so this is at least $|S_{><}|$ resampled zeroes. For the more general case, assume that $S$ is larger than $P$ on both sides of $P$. This is illustrated in Figure \ref{fig:patches}. We will focus on the following sum that was in the above equations:
    \begin{align*}
        \sum_{f_{\overline{P}}\in\{0,1'\}^{|S \cap \overline{P}|}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}})
    \end{align*}
    By Lemma \ref{lemma:eventindependence} we can split this sum into two parts: the part to the left of $P$ and the part to the right of $P$. Define $S_\mathrm{left}=S\cap[S_\mathrm{min},P_{\mathrm{min}}-1]$ and $S_\mathrm{right}=S\cap[P_{\mathrm{max}}+1,S_\mathrm{max}]$, so that $S\cap\overline{P} = S_\mathrm{left} \cup S_\mathrm{right}$. These are also illustrated in Figure \ref{fig:patches}. Then we have
    \begin{align*}
        \mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}})
        &= \mathbb{P}_{S(f_{\mathrm{left}})}(\overline{Z^{(P_{\min}-1)}}) \;\cdot\; \mathbb{P}_{S(f_{\mathrm{right}})}(\overline{Z^{(P_{\max}+1)}})
    \end{align*}
    and hence we can split the sum. Without loss of generality we now only consider the `right' part of the sum:
    \begin{align*}
        \sum_{f\in\{0,1'\}^{|S_\mathrm{right}|}} \rho_{S_\mathrm{right}(f)} \mathbb{P}_{S_\mathrm{right}(f)}(\overline{Z^{(P_{\max}+1)}})
    \end{align*}
    Now further split this sum over the value of $f$ at position $S_\mathrm{max}$:
    \begin{align*}
        \sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}} \sum_{f'\in\{0,1'\}}
        \rho_{S_\mathrm{right}(f\,f')} \mathbb{P}_{S_\mathrm{right}(f\,f')}(\overline{Z^{(P_{\max}+1)}})
    \end{align*}
    and we use the definition of $\rho$ for the sum over $f'$:
    \begin{align*}
         \sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}}
        \rho_{S_\mathrm{right}(f)} \left(p \mathbb{P}_{S_\mathrm{right}(f\, 0)}(\overline{Z^{(P_{\max}+1)}}) + (-p) \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{Z^{(P_{\max}+1)}}) \right)
    \end{align*}
    Now we recognize the setup of Lemma~\ref{lemma:probIndep} with $I=S_\mathrm{right}(f\,0)$ and $I'=S_\mathrm{right}(f\,1)$. The lemma yields
    \begin{align*}
        \mathbb{P}_{S_\mathrm{right}(f\, 0)}(\overline{Z^{(P_{\max}+1)}}) &= \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{Z^{(P_{\max}+1)}}) + \mathcal{O}(p^{S_\mathrm{max}-(P_{\mathrm{max}}+1)+1-|S_\mathrm{right}|}) \\
        &= \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{Z^{(P_{\max}+1)}}) + \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|}) .
    \end{align*}
    Entering this back into the sum gives
    \begin{align*}
         \sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}}
        \rho_{S_\mathrm{right}(f)} \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|+1})
         = \sum_{f\in\{0,1'\}^{|S_\mathrm{right}|}}
        \rho_{S_\mathrm{right}(f)} \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|})
    \end{align*}
    One can do the same for the `left' part, which gives a term $\mathcal{O}(p^{P_\mathrm{min}-S_{\mathrm{min}}-|S_\mathrm{left}|})$. The part of $S$ that was within $P$ gives $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{P_\mathrm{max}-P_\mathrm{min}+1-|S\cap P|})$. Combining these three factors yields
    \begin{align*}
        (\textrm{left part})(P\textrm{ part})(\textrm{right part}) &=
\mathcal{O}(p^{P_\mathrm{min}-S_{\mathrm{min}}-|S_\mathrm{left}|}) \cdot \mathcal{O}(p^{P_\mathrm{max}-P_\mathrm{min}+1-|S\cap P|}) \cdot \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|}) \\
        &= \mathcal{O}(p^{S_\mathrm{max}-S_\mathrm{min}+1-|S_\mathrm{left}\cup S_\mathrm{right}\cup (S\cap P)|})\\
        &= \mathcal{O}(p^{S_\mathrm{max}-S_\mathrm{min}+1-|S|})
        = \mathcal{O}(p^{|S_{><}|})
    \end{align*}
    as required. This finishes the proof.

    ~

	I think the same arguments would translate to the torus and other translationally invariant spaces, so we could go higher dimensional as Mario suggested. Then I think one would need to replace $|S_{><}|$ by the minimal number $k$ such that there is a $C$ set for which $S\cup C$ is connected. I am not entirely sure how to generalise Lemma~\ref{lemma:probIndep} though, which has key importance in the present proof.
    
    Questions:
    \begin{itemize}
    	\item Is this proof finally flawless?
    	\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
    	\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
    	\item Can we prove the conjectured formula for $a_k^{(3)}$?		
    \end{itemize} 
    
\begin{comment}
    \subsection{Sketch of the (false) proof of the linear bound \ref{it:const}}
    Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
    %\begin{definition}[Resample sequences]
    %	A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
    %\end{definition}
    %\begin{definition}[Constrained resample sequence]\label{def:constrainedRes}
    %	Let $C\subseteq[n]$ denote a slot configuration, and let $a\in\{\text{res},\neg\text{res}\}^{n-|C|}$, where the elements correspond to labels ``resampled" vs. ``not resampled" respectively. 
    %	For $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
    %	We define the set $A^{(C,a)}\subseteq RS$ as the set of resample sequences $(r_\ell)$ such that for all $j$ which has $a_j=\text{res}$ we have that $i_j$ appears in $(r_\ell)$ but for $j'$-s which have $a_{j'}=\neg\text{res}$ we have that $i_{j'}$ never appears in $(r_\ell)$. 
    %\end{definition}    
    \begin{definition}[Conditional expected number of resamples]
    	For a slot configuration $C\subseteq[n]$ and $a\in\{\!\text{ever},\text{ never}\}^{n-|C|}$ we define the event $A^{(C,a)}:=\bigwedge_{j\in[n-|C|]}\{i_j\text{ has }a_j\text{ become }0\text{ before reaching }\mathbf{1}\}$,
    	where $i_j$ is the $j$-th vertex of $[n]\setminus C$.
    	Then we also define
    	$$R^{(C,a)}_b:=\mathbb{E}[\#\{\text{resamplings when started from inital state }b\}|A^{(C,a)}].$$
    \end{definition}     
    
    As in Mario's proof I use the observation that 
    \begin{align*}
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p)\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}}\sum_{a\in\{\!\text{ever},\text{ never}\}^{n-|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)P_{C(f)}(A^{(C,a)})\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\!\text{ever},\text{ never}\}^{n-|C|}} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)P_{C(f)}(A^{(C,a)}), 
    \end{align*}
    where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$, while all other location in $[n]\setminus C$ are set to $1$. 
    When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context. Finally by $P_{C(f)}(A^{(C,a)})$ we denote the probability that the event $A^{(C,a)}$ holds.
    
    As in Definition for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
    Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that 
    $a_{j_1}=\text{never}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions. 
    I wanted to prove that
    \begin{equation}\label{eq:conditionalCancellation}
		\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0,
    \end{equation}    
    based on the observation that for all $f\in\{0,1'\}^{|C|}$ we have 
    that 
    \begin{equation}\label{eq:keyIndependce}
    R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
    \end{equation}
    where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain ``never". We define things analogously for $f_r$ and $a_r$. 
    
    The reason why \eqref{eq:keyIndependce} holds is that as before the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ can become $0$. To be more precise each resample sequence $\left(C(f)\rightarrow \mathbf{1} \right)\in A^{(C,a)}$ can be uniquely decomposed to resample sequences $\left(C_l(f_l)\rightarrow \mathbf{1}\right)\in A^{(C_l,a_l)}$ and $\left(C_r(f_r)\rightarrow \mathbf{1}\right)\in A^{(C_r,a_r)}$. The sum of probabilities of the set of resample sequences $\{r\}$ which have decomposition $(r_l,r_r)$ have probability which is the product of the probabilities of $r_l$ and $r_r$ as shown in the proof of Claim~\ref{claim:expectationsum}. This proves that the set of all resample sequences $\left(C(f)\rightarrow \mathbf{1}\right)\in A^{(C,a)}$ for our purposes can be viewed as a product set with product probability distribution. Therefore the halves can be treated independently and so the expectation values just add up. 
    
    From here I wanted to mimic Mario's proof:
    \begin{align*}
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
    \sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}}  (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
    &= 0.
    \end{align*}
    The nasty issue which I did not realise that the missing term $P_{C(f)}(A^{(C,a)})$ is non-constant: even though the event $A^{(C,a)}$ is independent of $f$ the probability $P_{C(f)}(A^{(C,a)})=P_{C(f_l)}(A^{(C_l,a_l)})\cdot P_{C(f_r)}(A^{(C_r,a_r)})$ is not and so the above breaks down.
    
    Observe that if \eqref{eq:conditionalCancellation} would hold for configurations that cut the slot configuration to two halves it would imply that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{ever}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along ``never" vertices, or there is an island of $\text{ever}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot set these indices to $0$, without reaching them by some resamplings, and thereby building a path of $0$-s leading there.
    
    If $|C\cup\{i_j:a_j=\text{ever}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{ever}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This would prove that $a_k^{(n)}$ is constant for $n\geq k+1$. The same arguments would directly translate to the torus and other translationally invariant objects, so we could go higher dimensional as Mario suggested.
    
    Questions:
    \begin{itemize}
    	\item Is it possible to somehow fix this proof?
    	\item In view of this (false) proof, can we better characterise $a_k^{(k+1)}$?
    	\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
    	\item Can we prove the conjectured formula for $a_k^{(3)}$?		
    \end{itemize} 

\begin{comment}
    \subsection{Sketch of the proof of the linear bound \ref{it:const}}
    Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
    \begin{definition}[Resample sequences]
		A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
    \end{definition}
    \begin{definition}[Constrained resample sequence]\label{def:constrainedRes}
    	Let $C\subseteq[n]$ denote a slot configuration, and let $a\in\{\text{res},\neg\text{res}\}^{n-|C|}$, where the elements correspond to labels ``resampled" vs. ``not resampled" respectively. 
    	For $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
		We define the set $A^{(C,a)}\subseteq RS$ as the set of resample sequences $(r_\ell)$ such that for all $j$ which has $a_j=\text{res}$ we have that $i_j$ appears in $(r_\ell)$ but for $j'$-s which have $a_{j'}=\neg\text{res}$ we have that $i_{j'}$ never appears in $(r_\ell)$. 
    \end{definition}    
    \begin{definition}[Expected number of resamples]
		For $b\in\{0,1\}^n$ we define 
		$$R_b=\mathbb{E}[\#\{\text{resamplings when started from inital state }b\}],$$
		and for $(C,a)$ as in the previous definition we also define
		$$R^{(C,a)}_b=\mathbb{E}[\#\{\text{resamplings }\in A^{(C,a)} \text{ when started from inital state }b\}].$$
		Here we mean by the latter that after each resampling we check whether the sequence of resamplings so far is in $A^{(C,a)}$, if yes we count it, otherwise we do not count.
    \end{definition}     
    
    As in Mario's proof I use the observation that 
    \begin{align*}
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p)\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}}\sum_{a\in\{\text{res},\neg\text{res}\}^{n-|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\text{res},\neg\text{res}\}^{n-|C|}} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p), 
    \end{align*}
    where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$, while all other location in $[n]\setminus C$ are set to $1$. 
	When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context.
    
    As in Definition~\ref{def:constrainedRes} for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
    Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that 
    $a_{j_1}=\neg\text{res}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions. 
    We claim that 
    $$\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0.$$
    
	This is based on the observation that that for all $f\in\{0,1'\}^{|C|}$ we have 
    that 
    \begin{equation}\label{eq:keyIndependceWrong}
    R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
    \end{equation}
    where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain $\neg\text{res}$. We define things analogously for $f_r$ and $a_r$.
    
    The reason why \eqref{eq:keyIndependceWrong} holds is as before that the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ are resampled. One could probably also argue similarly as Tom's grid figure shows. 
    From here the proof goes just as in Mario's proof:
    \begin{align*}
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
    \sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}}  (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
    &= 0.
    \end{align*}
    
    Observe that it implies that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{res}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along $\neg\text{res}$ vertices, or there is an island of $\text{res}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot resample these indices without first setting them to $0$, but under the conditions they can be never reached by any resampling, therefore they remain $1$ always.
    
    If $|C\cup\{i_j:a_j=\text{res}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{res}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This proves that $a_k^{(n)}$ is constant for $n\geq k+1$.
    
    Note that the heart of the proof is \eqref{eq:keyIndependceWrong}, so this is what we should double check.    

	The same arguments directly translate to the torus and other translationally invariant objects, so we can go higher dimensional :-) as Mario suggested.
	
	Questions:
	\begin{itemize}
		\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
		\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
		\item Can we prove the conjectured formula for $a_k^{(3)}$?		
	\end{itemize} 
\end{comment}
        
\begin{comment}    
    \begin{definition}[Neighborhood]
	   	For the length-$n$ cycle we identify sites with $[n]$. 
	   	For a subset $S\subseteq [n]$ we define the $k$ neighborhood of $S$ as
	   	$N_k(S):=\cup_{s\in S} \{s-k,s-k+1,\ldots,s+k\}$ where numbers are interpreted mod $n$ and we represent the $\equiv 0$ class by $n$).
	\end{definition}
	\begin{definition}[Blocks and Gaps]
	   	For a configuration $C\subseteq [n]$ we call the connected components of $[n]\setminus N_1(C)$ the gaps. We denote by $m_C$ the number of gaps.
	   	We call a non-empty subset $B\subset C$ a block if $N_3(B)\cap C=B$ and $B$ is minimal, i.e., there is no proper subset $\emptyset\neq B'\subsetneq B$ satisfying $N_3(B')\cap C=B'$. 
	   	Observe that whenever $m_C\geq 2$ the number of blocks is the same as the number of gaps.  
    \end{definition}
    \begin{definition}[Crossings]
    	We say that a run (path) of the resampling procedure crosses $i\in[n]$ if there is ever a $0$ in $N_1({i})$ during the run.
    \end{definition}
    \begin{definition}[Enumerating gaps and mid points]
		Let $G_1,G_2,\ldots, G_{m_C}$ be an enumeration of the gaps respecting the cyclic ordering, and let $g_i$ be the middle element of $G_i$, if there are two middle elements we choose the smaller according to the cyclic ordering. (If $m_C=1$ and $G_1=[n]$ let $g_1=1$.)
		If $m_C\geq 2$ then for all $i\in[m_C]$ let $B_i$ be the block between $G_i$ and $G_{i+1}$.
    \end{definition}
    
    As in Mario's proof I use the observation that 
    \begin{align*}
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_b(p)\\
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p),
    \end{align*}
    where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$. 
    For $a\in\{\text{crossed},\text{not crossed}\}^m$ we also introduce the notation $R^a_{C(f)}(p):=\mathbb{E}(\#\{\text{resamples before reaching }\mathbbm{1} \text{ from } C(f)\}|\bigwedge_{j\in[m_C]}g_j \text{ is } a_j)\cdot\mathbb{P}(\bigwedge_{j\in[m_C]}g_j \text{ is } a_j)$, which we define as $0$ if the conditioning event has $0$ probability. 
    Since $$R_{C(f)}(p)=\sum_{a\in\{\text{crossed},\text{not crossed}\}^{m_C}}R^a_{C(f)}(p),$$ we can further rewrite the expectation as
    \begin{align*}
	    R^{(n)}(p) &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\text{crossed},\text{not crossed}\}^{m_C}}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p).
    \end{align*}
    Suppose that $a$ contains at least two ``not crossed'', the we claim that $\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p)=0$. Let $j_1\neq j_2$ be two distinct indexes such that $a_{j_1}$ and $a_{j_2}$ are both saying ``not crossed''. Let $B_l:=B_{j_1}\cup B_{j_1+1}\cup\cdots\cup B_{j_2-1}$ and $B_r:=B_{j_2}\cup B_{j_2+1}\cup\cdots\cup B_{j_1-1}$ (again we interpret indexes mod $m_C$).
    Then we claim that for all $f\in\{0,1'\}^{|C|}$ we have 
    that 
    \begin{equation}\label{eq:keyIndependceOld}
		R^a_{C(f)}(p)=R^a_{B_l(f)}(p)+R^a_{B_r(f)}(p).
    \end{equation} 
    The reason is as before that the halves are independent because neither $g_{j_1}$ nor $g_{j_2}$ is crossed. One could probably similarly prove it as the grid figure shows. 
    From here the proof goes just as in Mario's proof:
    \begin{align*}
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p)&=
    \sum_{f_l\in\{0,1'\}^{|B_l|}} \sum_{f_r\in\{0,1'\}^{|B_r|}}  (-1)^{|f_l|+|f_r|}p^{|B_l|+|B_r|} \left( R^a_{B_l(f)} + R^a_{B_r(f)} \right)\\
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|B_l|}} (-1)^{|f_l|} R^a_{B_l(f)} \sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_r|} \\
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_r|} R^a_{B_r(f)} \sum_{f_l\in\{0,1'\}^{|B_l|}} (-1)^{|f_l|} \\
    &= 0 
    \end{align*}
    From this it follows that the only contribution comes from paths that cross all but one (or all) of the mid gaps. This then implies that it is enough to consider $\mathcal{O}(k)$ length configurations. (We define the length of a configuration $C$ as $n-\max_{j\in[m_C]}|G_j|$.)
    
    Note that the heart of the proof is \eqref{eq:keyIndependceOld}, so this is what we should double check.
    
    In fact I think the independence that we use in \eqref{eq:keyIndependceOld} can be also proven when we define a crossing as crossing the actual point, and not its $1$-neighborhood. It then would make it possible to define blocks as consecutive slacks. Also then we could actually use all points of the gaps not only the mid points. The requirement for the cancellation would be that there are ``not crossed'' labels from at least two distinct gaps. This would probably lead to the optimal $k+1$ bound giving the actual statement \ref{it:const}. 
    
    Speculation: The $n=k$ case would then probably not work because the all $0$ starting configuration is invariant under rotations.
    To actually go below $2k$ one needs to be careful, because there are periodic configurations that are invariant under some rotations causing double counting issues. This can be probably resolved by showing that when a pattern becomes periodic for some $n$ it actually produces periodicity times more expectation due to symmetry. But this is all just speculation.
\end{comment}

	\bibliographystyle{alpha}
	\bibliography{Resample.bib}
	
\end{document}