Changeset - 231f5e366818
[Not reviewed]
0 1 0
András Gilyén - 8 years ago 2017-09-06 15:22:19
gilyenandras@gmail.com
Update on Overleaf.
1 file changed with 2 insertions and 2 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -887,10 +887,10 @@ Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is
 
    \end{itemize} 
 
    
 
	\begin{lemma}On the infinite chain
 
		$$\P_I(Z^{0}\cap Z^{k})=\P_I(Z^{0})\P_I(Z^{k})+\mathcal{O}(p^{k-|b|+1})$$
 
		$$\P_I(Z^{0}\cap Z^{k})=\P_I(Z^{0})\P_I(Z^{k})+\mathcal{O}(p^{k-|I|+1})$$
 
	\end{lemma}   
 
    Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying:
 
    $$\P_I(NZ^{0}\cap NZ^{k})=\P_I(NZ^{0})\P_I(NZ^{k})+\mathcal{O}(p^{k-|b|+1})$$
 
    $$\P_I(NZ^{0}\cap NZ^{k})=\P_I(NZ^{0})\P_I(NZ^{k})+\mathcal{O}(p^{k-|I|+1})$$
 
    \begin{proof}
 
    We proceed by induction on $|I|$. For $|I|=0,1$ the statement is trivial.
 
    
0 comments (0 inline, 0 general)