Changeset - 9e5ac6b49d57
[Not reviewed]
0 1 0
András Gilyén - 8 years ago 2017-09-14 00:15:32
gilyen@cwi.nl
General distance-degree lemma
1 file changed with 7 insertions and 7 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -365,122 +365,122 @@ The following Lemma says that if a set $S$ splits the graph in two, then those t
 
    \begin{align*}
 
        \P^{G}_S(\xi^{G})
 
        &= (1-p)^{|b^X\; b^Y|} p^{|X\cup Y|-|b^X\;b^Y|} \quad
 
        \frac{1}{z^X_1+z^Y_1} \P(r^Y_1) \cdot
 
        \frac{1}{z^X_1+z^Y_2} \P(r^X_1) \cdots \\
 
        &= (1-p)^{|b^X|} p^{|X|-|b^X|} \cdot (1-p)^{|b^Y|} p^{|Y|-|b^Y|} \\
 
        &\qquad \cdot
 
        \frac{z^Y_1}{z^X_1+z^Y_1} \frac{1}{z^Y_1} \P(r^Y_1) \;
 
        \frac{z^X_1}{z^X_1+z^Y_2} \frac{1}{z^X_1} \P(r^X_1) \;
 
        \frac{z^X_2}{z^X_2+z^Y_2} \frac{1}{z^X_2} \P(r^X_2)
 
        \cdots \tag{rewrite fractions}\\
 
        &=
 
        \frac{z^Y_1}{z^X_1+z^Y_1} 
 
        \frac{z^X_1}{z^X_1+z^Y_2} 
 
        \frac{z^X_2}{z^X_2+z^Y_2} 
 
        \cdots
 
        \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \; \P^{G\setminus X}_S(\xi^{G\setminus X})
 
        \tag{definition} \\
 
        &= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \cdots \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \; \P^{G\setminus X}_S(\xi^{G\setminus X})
 
        \tag{definition of $p_{i,j}$} \\
 
        &= \P(\text{path in grid}) \; \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \; \P^{G\setminus X}_S(\xi^{G\setminus X})
 
    \end{align*}
 
    In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
 
    We obtain
 
    \begin{align*}
 
        \P^{G}_S(\NZ{S} \cap A^X \cap A^Y)
 
        &= \sum_{\xi^G \in \NZ{S}\cap A^X \cap A^Y} \P^{G}_S(\xi^G) \\
 
        &= \sum_{\xi^{G\setminus Y} \in \NZ{S}\cap A^X}
 
           \sum_{\xi^{G\setminus X} \in \NZ{S}\cap A^Y}
 
            \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \cdot
 
            \P^{G\setminus X}_S(\xi^{G\setminus X}) \\
 
        &= \P^{G\setminus Y}_S(\NZ{S} \cap A^X) \; \cdot \; \P^{G\setminus X}_S(\NZ{S} \cap A^Y)
 
    \end{align*}
 
\end{proof}
 

	
 
The intuition of the following lemma is that if two sites have distance $d$ in the graph, then the only way they can affect each other is that an interaction chain is forming between them, meaning that every vertex should get resampled to $0$ at least once in between them.
 

	
 
\begin{lemma}\label{lemma:distancePower}
 
	Suppose $G=(V,E)$ is a graph, $X,Y\subseteq V$ and $A^X$ is a local event on $X$. Then
 
	$$\P^{G}(A^X)-\P^{G\setminus Y}(A^X)=\bigO{p^{d(X,Y)}}.$$
 
	(Should be true with $+1$ in the degree!)
 
\end{lemma}
 
\begin{proof}
 
	We can assume without loss of generality, that $X\neq \emptyset\neq Y$, otherwise the statement is trivial.
 
	
 
	The proof goes by induction on $d(X,Y)$. The statement is trivial for $d(X,Y)=0$, and is easy to check for $d(X,Y)=1$, by looking at resample sequences that reach the all $1$ state in at most $0$ step (which is simply the case when everything is sampled to $1$ initially).
 
	
 
	Now we show the inductive step, assuming we know the statement for $d$, and that $d(X,Y)=d+1$.
 
	First we assume, that $\NZ{X}\subseteq\overline{A^X}$, i.e., $A^X=A^X\cap \Z{X}$.
 
	First we assume, that $\NZ{X}\subseteq\overline{A^X}$, i.e., $A^X\subseteq \Z{X}$.
 
	
 
	For $i\in[d]$ we define $A_i^X:=A^X\cap{\NZ{\overline{\partial}(X,i)}}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, 
 
	and define $A_{d+1}^X:=A^X\cap\bigcap_{j\in[d]}\Z{\overline{\partial}(X,j)}$,
 
	it is easy to see that it is partition $A^X=\dot\bigcup_{i\in [d+1]}A_i^X$. 
 
	Also it is easy to see that for all $i\in[d+1]$ we have $A_{i}^X\subseteq\Z{X}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and therefore 
 
	so that they form a partition $A^X=\dot\bigcup_{i\in [d+1]}A_i^X$. 
 
	It is easy to see that for all $i\in[d+1]$ we have $A_{i}^X\subseteq\Z{X}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and therefore 
 
	\begin{equation}\label{eq:AXorder}
 
		\P^G(A_{i}^X)=\bigO{p^{i}}.
 
	\end{equation}
 
	Now we use the Splitting lemma~\ref{lemma:splitting} to show that for all $i\in[d]$
 
	\begin{align}
 
		\P^G(A_{i}^X)
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)}) \tag{by Lemma~\ref{lemma:splitting}}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \left(\P^{G\setminus Y\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1-i}}\right) \tag{by induction}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus Y\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1}} \tag{by equation \eqref{eq:AXorder}}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)}) \tag{by Lemma~\ref{lemma:splitting}}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \left(\P^{G\setminus Y\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1-i}}\right) \tag{by induction}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus Y\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1}} \tag{by equation \eqref{eq:AXorder}}\\
 
		&=\P^{G\setminus Y}(A_{i}^X)+\bigO{p^{d+1}} \tag{by Lemma~\ref{lemma:splitting}}\\
 
		&=\P^{G\setminus Y}(A_{i}^X)+\bigO{p^{d(Y,Y)}}. \label{eq:indStep}
 
	\end{align}
 
	Therefore 
 
	$$\P^G(A^X)
 
	\overset{\eqref{eq:AXorder}}{=}\sum_{i\in[d]}\P^G(A_i^X)+\bigO{p^{d(Y,Y)}}
 
	\overset{\eqref{eq:indStep}}{=}\sum_{i\in[d]}\P^{G\setminus Y}(A_i^X)+\bigO{p^{d(Y,Y)}}
 
	\overset{\eqref{eq:AXorder}}{=}\P^{G\setminus Y}(A^X)+\bigO{p^{d(Y,Y)}}.
 
	$$
 
	We finish the proof by observing that if $\NZ{X}\nsubseteq\overline{A^X}$,
 
	then we necessarily have $\NZ{X}\subseteq A^X$, and therefore we can use the above proof with $B^X:=\overline{A^X}$ and using that $\P(A^X)=1-\P(B^X)$.
 
	then we necessarily have $\NZ{X}\subseteq A^X$, and therefore we can use the above proof with $B^X:=\overline{A^X}$ and use that $\P(A^X)=1-\P(B^X)$.
 
\end{proof}
 
	
 
	\begin{theorem} If $2< 2m\leq n$ and $m\leq M$, then $R^{(n)}=\E^{[-M,M]}(\Res{0})+\bigO{p^{m}}$.
 
	\end{theorem}
 
	\begin{proof} 
 
		\vskip-12mm
 
		\begin{align*}
 
			R^{(n)}
 
			&= \E^{(n)}(\Res{0}) \tag{by translation invariance}\\
 
			&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{0}\!\geq\! k) \\		
 
			&= \sum_{k=1}^{\infty}\P^{[-m+1,m-1]}(\Res{0}\!\geq\! k)+ \bigO{p^{m}} \tag{by Lemma~\ref{lemma:distancePower}}\\
 
			&= \sum_{k=1}^{\infty}\P^{[-M,M]}(\Res{0}\!\geq\! k)+ \bigO{p^{m}} \tag{by Lemma~\ref{lemma:distancePower}}\\	
 
			&=\E^{[-M,M]}(\Res{0})+\bigO{p^{m}}.
 
		\end{align*}  
 
		\vskip-7mm		
 
	\end{proof} 	
 
\begin{comment}
 
		Let $N\geq \max(2n,2m)$, then
 
		\begin{align*}
 
		R^{(n)}
 
		&= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\
 
		&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P})  +\bigO{p^{n}} \\	
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\				
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \P^{[\overline{P}]}(\NZ{\partial P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[|\overline{P}|]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[N]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\
 
		&= \E^{[-N,N]}(\Res{1})+\bigO{p^{n}}.
 
		\end{align*}	
 
\end{comment}			
 

	
 
~
 

	
 
Questions:
 
\begin{itemize}
 
	\item Can we prove some upper bound of the coefficients in the difference, other than they are zero for small powers?
 
	\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
\end{itemize} 
 

	
 
\newpage
 
\section{Proving that $a_k^{(k+1)}=a_k^{(n)}$ for all $n>k$}
 
	Let $$P_{C}:=\NZ{\overline{\partial}(C,1)}\cap\bigcap_{v\in C}\Z{\{v\}}$$ be the event that every points of $C$ gets to $0$ at some time, but not its boundary. If $P_{C}$ holds, we say $C$ is a patch of the $0$-s.
 
 	\begin{lemma}\label{lemma:independenetSidesNew}	
0 comments (0 inline, 0 general)