Changeset - 9e5ac6b49d57
[Not reviewed]
0 1 0
András Gilyén - 8 years ago 2017-09-14 00:15:32
gilyen@cwi.nl
General distance-degree lemma
1 file changed with 7 insertions and 7 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -317,218 +317,218 @@ The following Lemma says that if a set $S$ splits the graph in two, then those t
 
    \begin{align*}
 
        \sum_{\substack{\xi^G\in\NZ{S} \text{ s.t.}\\ \xi^G \text{ decomposes into } \xi^{G\setminus Y},\xi^{G\setminus X} }} \P^{G}_S(\xi^G) &=
 
        \sum_{\text{interleavings of }\xi^{G\setminus Y},\xi^{G\setminus X}} \P(\text{interleaving}) \cdot \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \cdot \P^{G\setminus X}_S(\xi^{G\setminus X}) \\
 
        &= \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \cdot \P^{G\setminus X}_S(\xi^{G\setminus X}) 
 
    \end{align*}
 
    where both sums are over $\binom{|\xi^{G\setminus Y}|+|\xi^{G\setminus X}|}{|\xi^{G\setminus Y}|}$ terms.
 
    This is best explained by an example. Lets consider the following fixed $\xi^{G\setminus Y},\xi^{G\setminus X}$ and an example interleaving where we choose vertices from $Y,X,X,Y,\cdots$:
 
    \begin{align*}
 
        \xi^{G\setminus Y} &= \left( (\text{initialize to }b^X\;1^S),
 
        (z^X_1, v^X_1, r^X_1),
 
        (z^X_2, v^X_2, r^X_2),
 
        (z^X_3, v^X_3, r^X_3),
 
        (z^X_4, v^X_4, r^X_4),
 
        \cdots  \right) \\
 
        \xi^{G\setminus X} &= \left( (\text{initialize to }1^S\;b^Y),
 
        (z^Y_1, v^Y_1, r^Y_1),
 
        (z^Y_2, v^Y_2, r^Y_2),
 
        (z^Y_3, v^Y_3, r^Y_3),
 
        (z^Y_4, v^Y_4, r^Y_4),
 
        \cdots  \right) \\
 
        \xi^G             &= \big( (\text{initialize to }b^X \; 1^S \; b^Y),
 
        (z^X_1+z^Y_1, v^Y_1, r^Y_1),
 
        (z^X_1+z^Y_2, v^X_1, r^X_1), \\
 
        &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad
 
        (z^X_2+z^Y_2, v^X_2, r^X_2),
 
        (z^X_3+z^Y_2, v^Y_2, r^Y_2),
 
        \cdots \big)
 
    \end{align*}
 
    Here $b^X\in \{0,1\}^{X}$ and $b^Y\in\{0,1\}^Y$. Since we condition on the event that $S$ is initialized to ones, we know the initial state is of the form $b^X\;1^S$ in $\xi^{G\setminus Y}$. Similarly, since these paths satisfy the $\NZ{S}$ event, we know all the vertices $v_i$ resampled in $\xi^{G\setminus Y}$ are vertices in $X$, and the resampled bits $r_i$ are bits corresponding to vertices in $X$.
 
    In the newly constructed path $\xi^G$ the number of zeroes is the number of zeroes in $X$ and $Y$ together, so this starts as $z^X_1 + z^Y_1$. Then in this example, after the first step the number of zeroes is $z^X_1+z^Y_2$ since a step of $\xi^{G\setminus X}$ was done (so a vertex in $Y$ was resampled).
 
    The probability of $\xi^{G\setminus Y}$ is given by
 
    \begin{align*}
 
        \P^{G\setminus Y}_S(\xi^{G\setminus Y}) &=
 
        \P(\text{initialize }b^X\;1^S \mid \text{initialize $S$ to }1)
 
        \P(\text{pick }v^X_1 \mid z^X_1) \P(r^X_1)
 
        \P(\text{pick }v^X_2 \mid z^X_2) \P(r^X_2) \cdots \\ 
 
        &= (1-p)^{|b^X|} p^{|X|-|b^X|} \cdot
 
        \frac{1}{z^X_1} \P(r^X_1) \cdot
 
        \frac{1}{z^X_2} \P(r^X_2) \cdots
 
        \frac{1}{z^X_{|\xi^{G\setminus Y}|}} \P(r^X_{|\xi^{G\setminus Y}|}) .
 
    \end{align*}
 
    and similar for $\xi^{G\setminus X}$.
 
    Instead of choosing a step in $Y,X,X,Y,\cdots$ we could have chosen other orderings. The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $Y,X,X,Y$ in the example above.
 
    \begin{center}
 
        \includegraphics{diagram_paths3.pdf}
 
    \end{center}
 
    For the labels shown within the grid, define $p_{ij} = \frac{z^X_i}{z^X_i + z^Y_j}$.
 
    The probability of this particular interleaving $\xi^G$ is given by
 
    \begin{align*}
 
        \P^{G}_S(\xi^{G})
 
        &= (1-p)^{|b^X\; b^Y|} p^{|X\cup Y|-|b^X\;b^Y|} \quad
 
        \frac{1}{z^X_1+z^Y_1} \P(r^Y_1) \cdot
 
        \frac{1}{z^X_1+z^Y_2} \P(r^X_1) \cdots \\
 
        &= (1-p)^{|b^X|} p^{|X|-|b^X|} \cdot (1-p)^{|b^Y|} p^{|Y|-|b^Y|} \\
 
        &\qquad \cdot
 
        \frac{z^Y_1}{z^X_1+z^Y_1} \frac{1}{z^Y_1} \P(r^Y_1) \;
 
        \frac{z^X_1}{z^X_1+z^Y_2} \frac{1}{z^X_1} \P(r^X_1) \;
 
        \frac{z^X_2}{z^X_2+z^Y_2} \frac{1}{z^X_2} \P(r^X_2)
 
        \cdots \tag{rewrite fractions}\\
 
        &=
 
        \frac{z^Y_1}{z^X_1+z^Y_1} 
 
        \frac{z^X_1}{z^X_1+z^Y_2} 
 
        \frac{z^X_2}{z^X_2+z^Y_2} 
 
        \cdots
 
        \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \; \P^{G\setminus X}_S(\xi^{G\setminus X})
 
        \tag{definition} \\
 
        &= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \cdots \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \; \P^{G\setminus X}_S(\xi^{G\setminus X})
 
        \tag{definition of $p_{i,j}$} \\
 
        &= \P(\text{path in grid}) \; \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \; \P^{G\setminus X}_S(\xi^{G\setminus X})
 
    \end{align*}
 
    In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
 
    We obtain
 
    \begin{align*}
 
        \P^{G}_S(\NZ{S} \cap A^X \cap A^Y)
 
        &= \sum_{\xi^G \in \NZ{S}\cap A^X \cap A^Y} \P^{G}_S(\xi^G) \\
 
        &= \sum_{\xi^{G\setminus Y} \in \NZ{S}\cap A^X}
 
           \sum_{\xi^{G\setminus X} \in \NZ{S}\cap A^Y}
 
            \P^{G\setminus Y}_S(\xi^{G\setminus Y}) \cdot
 
            \P^{G\setminus X}_S(\xi^{G\setminus X}) \\
 
        &= \P^{G\setminus Y}_S(\NZ{S} \cap A^X) \; \cdot \; \P^{G\setminus X}_S(\NZ{S} \cap A^Y)
 
    \end{align*}
 
\end{proof}
 

	
 
The intuition of the following lemma is that if two sites have distance $d$ in the graph, then the only way they can affect each other is that an interaction chain is forming between them, meaning that every vertex should get resampled to $0$ at least once in between them.
 

	
 
\begin{lemma}\label{lemma:distancePower}
 
	Suppose $G=(V,E)$ is a graph, $X,Y\subseteq V$ and $A^X$ is a local event on $X$. Then
 
	$$\P^{G}(A^X)-\P^{G\setminus Y}(A^X)=\bigO{p^{d(X,Y)}}.$$
 
	(Should be true with $+1$ in the degree!)
 
\end{lemma}
 
\begin{proof}
 
	We can assume without loss of generality, that $X\neq \emptyset\neq Y$, otherwise the statement is trivial.
 
	
 
	The proof goes by induction on $d(X,Y)$. The statement is trivial for $d(X,Y)=0$, and is easy to check for $d(X,Y)=1$, by looking at resample sequences that reach the all $1$ state in at most $0$ step (which is simply the case when everything is sampled to $1$ initially).
 
	
 
	Now we show the inductive step, assuming we know the statement for $d$, and that $d(X,Y)=d+1$.
 
	First we assume, that $\NZ{X}\subseteq\overline{A^X}$, i.e., $A^X=A^X\cap \Z{X}$.
 
	First we assume, that $\NZ{X}\subseteq\overline{A^X}$, i.e., $A^X\subseteq \Z{X}$.
 
	
 
	For $i\in[d]$ we define $A_i^X:=A^X\cap{\NZ{\overline{\partial}(X,i)}}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, 
 
	and define $A_{d+1}^X:=A^X\cap\bigcap_{j\in[d]}\Z{\overline{\partial}(X,j)}$,
 
	it is easy to see that it is partition $A^X=\dot\bigcup_{i\in [d+1]}A_i^X$. 
 
	Also it is easy to see that for all $i\in[d+1]$ we have $A_{i}^X\subseteq\Z{X}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and therefore 
 
	so that they form a partition $A^X=\dot\bigcup_{i\in [d+1]}A_i^X$. 
 
	It is easy to see that for all $i\in[d+1]$ we have $A_{i}^X\subseteq\Z{X}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and therefore 
 
	\begin{equation}\label{eq:AXorder}
 
		\P^G(A_{i}^X)=\bigO{p^{i}}.
 
	\end{equation}
 
	Now we use the Splitting lemma~\ref{lemma:splitting} to show that for all $i\in[d]$
 
	\begin{align}
 
		\P^G(A_{i}^X)
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)}) \tag{by Lemma~\ref{lemma:splitting}}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \left(\P^{G\setminus Y\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1-i}}\right) \tag{by induction}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus Y\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1}} \tag{by equation \eqref{eq:AXorder}}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)}) \tag{by Lemma~\ref{lemma:splitting}}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \left(\P^{G\setminus Y\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1-i}}\right) \tag{by induction}\\
 
		&=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus Y\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1}} \tag{by equation \eqref{eq:AXorder}}\\
 
		&=\P^{G\setminus Y}(A_{i}^X)+\bigO{p^{d+1}} \tag{by Lemma~\ref{lemma:splitting}}\\
 
		&=\P^{G\setminus Y}(A_{i}^X)+\bigO{p^{d(Y,Y)}}. \label{eq:indStep}
 
	\end{align}
 
	Therefore 
 
	$$\P^G(A^X)
 
	\overset{\eqref{eq:AXorder}}{=}\sum_{i\in[d]}\P^G(A_i^X)+\bigO{p^{d(Y,Y)}}
 
	\overset{\eqref{eq:indStep}}{=}\sum_{i\in[d]}\P^{G\setminus Y}(A_i^X)+\bigO{p^{d(Y,Y)}}
 
	\overset{\eqref{eq:AXorder}}{=}\P^{G\setminus Y}(A^X)+\bigO{p^{d(Y,Y)}}.
 
	$$
 
	We finish the proof by observing that if $\NZ{X}\nsubseteq\overline{A^X}$,
 
	then we necessarily have $\NZ{X}\subseteq A^X$, and therefore we can use the above proof with $B^X:=\overline{A^X}$ and using that $\P(A^X)=1-\P(B^X)$.
 
	then we necessarily have $\NZ{X}\subseteq A^X$, and therefore we can use the above proof with $B^X:=\overline{A^X}$ and use that $\P(A^X)=1-\P(B^X)$.
 
\end{proof}
 
	
 
	\begin{theorem} If $2< 2m\leq n$ and $m\leq M$, then $R^{(n)}=\E^{[-M,M]}(\Res{0})+\bigO{p^{m}}$.
 
	\end{theorem}
 
	\begin{proof} 
 
		\vskip-12mm
 
		\begin{align*}
 
			R^{(n)}
 
			&= \E^{(n)}(\Res{0}) \tag{by translation invariance}\\
 
			&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{0}\!\geq\! k) \\		
 
			&= \sum_{k=1}^{\infty}\P^{[-m+1,m-1]}(\Res{0}\!\geq\! k)+ \bigO{p^{m}} \tag{by Lemma~\ref{lemma:distancePower}}\\
 
			&= \sum_{k=1}^{\infty}\P^{[-M,M]}(\Res{0}\!\geq\! k)+ \bigO{p^{m}} \tag{by Lemma~\ref{lemma:distancePower}}\\	
 
			&=\E^{[-M,M]}(\Res{0})+\bigO{p^{m}}.
 
		\end{align*}  
 
		\vskip-7mm		
 
	\end{proof} 	
 
\begin{comment}
 
		Let $N\geq \max(2n,2m)$, then
 
		\begin{align*}
 
		R^{(n)}
 
		&= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\
 
		&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P})  +\bigO{p^{n}} \\	
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\				
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \P^{[\overline{P}]}(\NZ{\partial P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[|\overline{P}|]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[N]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNewGen}}\\
 
		&= \E^{[-N,N]}(\Res{1})+\bigO{p^{n}}.
 
		\end{align*}	
 
\end{comment}			
 

	
 
~
 

	
 
Questions:
 
\begin{itemize}
 
	\item Can we prove some upper bound of the coefficients in the difference, other than they are zero for small powers?
 
	\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
\end{itemize} 
 

	
 
\newpage
 
\section{Proving that $a_k^{(k+1)}=a_k^{(n)}$ for all $n>k$}
 
	Let $$P_{C}:=\NZ{\overline{\partial}(C,1)}\cap\bigcap_{v\in C}\Z{\{v\}}$$ be the event that every points of $C$ gets to $0$ at some time, but not its boundary. If $P_{C}$ holds, we say $C$ is a patch of the $0$-s.
 
 	\begin{lemma}\label{lemma:independenetSidesNew}	
 
 		$$\P^{[k]}(\Z{1}\cap \Z{k})=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})+\bigO{p^{k}}=\left(\P^{[k]}(\Z{1})\right)^2+\bigO{p^{k}}.$$
 
 	\end{lemma}   
 
 	Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying:
 
 	$$\P^{[k]}(\NZ{1}\cap \NZ{k})=\P^{[k]}(\NZ{1})\P^{[k]}(\NZ{k})+\bigO{p^{k}}.$$
 
 	\begin{proof}
 
 		We proceed by induction on $k$. For $k=1,2$ the statement is trivial.
 
 		
 
 		Now observe that:
 
 		$$\P^{[k]}(\Z{1})=\sum_{C\text{ connected}\,:\,1\in C}\P^{[k]}(P_{C})$$
 
 		$$\P^{[k]}(\Z{k})=\sum_{C\text{ connected}\,:\,k\in C}\P^{[k]}(P_{C})$$
 
 		
 
 		Suppose we proved the statement up to $k-1$, then we proceed using induction similarly to the above
 
 		\begin{align*}
 
 		&\P^{[k]}(\Z{1}\cap \Z{k})=\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!\P^{[k]}(P_{[\ell]}\cap P_{[r,k]})
 
 		+\P^{[k]}([k]\in\mathcal{P})\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!\P^{[k]}(P_{[\ell]}\cap P_{[r,k]})
 
 		+\bigO{p^{k}} \tag*{$\left(\P^{[k]}([k]\in\mathcal{P})=\bigO{p^{k}}\right)$}\\	
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[\ell+1]}_{\{\ell+1\}}(P_{[\ell]})
 
 		\P^{[\ell+1,r-1]}(\NZ{\ell+1}\cap \NZ{r-1})
 
 		\P^{[r-1,k]}_{\{r-1\}}(P_{[r,k]})
 
 		+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:splitting}}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[\ell+1]}_{\{\ell+1\}}(P_{[\ell]})
 
 		\left(\P^{[\ell+1,r-1]}(\NZ{\ell+1})
 
		\P^{[\ell+1,r-1]}(\NZ{r-1})\right)
 
 		\P^{[r-1,k]}_{\{r-1\}}(P_{[r,k]})
 
 		+\bigO{p^{k}} \tag{by induction}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[\ell+1]}_{\{\ell+1\}}(P_{[\ell]})
 
 		\left(\P^{[\ell+1,k]}(\NZ{\ell+1})
 
 		\P^{[1,r-1]}_{\{r-1\}}(\NZ{r-1})\right)
 
 		\P^{[r-1,k]}(P_{[r,k]})
 
 		+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:distancePower}}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[k]}(P_{[\ell]})
 
 		\P^{[k]}(P_{[r,k]})
 
 		+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:splitting}}\\
 
 		&=\left(\sum_{\ell\in [k]}\P^{[k]}(P_{[\ell]})\right)
 
 		\left(\sum_{r\in [k]}\P^{[k]}(P_{[r,k]})\right)
 
 		+\bigO{p^{k}} \tag*{$\left(\P^{[k]}(P_{[\ell]})=\bigO{p^{\ell}}\right)$}\\	
 
 		&=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})
 
 		+\bigO{p^{k}}.	
 
 		\end{align*}
 
 	\end{proof}
 

	
 
	Again the intuition of the final theorem is simmilar to the previous lemma. A site can only realise the length of the cycle after an interaction chain was formed around the cycle, implying that every vertex was resampled to $0$ at least once.
0 comments (0 inline, 0 general)