Changeset - b43c29412d5d
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-05-29 08:51:35
tombannink@gmail.com
Add note on probability independence claim
1 file changed with 6 insertions and 0 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -411,12 +411,18 @@ The proof of claim \ref{claim:expectationsum} also proves the following claim
 
        \mathbb{P}[\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2} \;|\;\text{start in }b_1]
 
        \; \cdot \;
 
        \mathbb{P}[\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2} \;|\;\text{start in }b_2]
 
    \end{align*}
 
up to any order in $p$.
 
\end{claim}
 
Since the left hand side is defined as
 
\begin{align*}
 
    \mathbb{P}[\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2} |\;\text{start in }b]
 
    = \sum_{\substack{\xi\in\paths{b}\\j_1,j_2 \text{ not 0 in } \xi}} \mathbb{P}[\xi]
 
\end{align*}
 
we see that all such paths $\xi$ can be split into paths $\xi_1\in\paths{b_1}$ and $\xi_2\in\paths{b_2}$ and by the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain the right hand side.
 

	
 
\newpage
 
    \subsection{Sketch of the (false) proof of the linear bound \ref{it:const}}
 
    Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
 
    %\begin{definition}[Resample sequences]
 
    %	A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
0 comments (0 inline, 0 general)