Changeset - fd8b2cc696df
[Not reviewed]
0 1 2
Tom Bannink - 8 years ago 2017-06-01 22:35:43
tombannink@gmail.com
Add diagram for lemma 12
3 files changed with 88 insertions and 23 deletions:
0 comments (0 inline, 0 general)
diagram_proborders.pdf
Show inline comments
 
new file 100644
 
binary diff not shown
diagram_proborders.tex
Show inline comments
 
new file 100644
 
\documentclass{standalone}
 
\usepackage[T1]{fontenc}
 
\usepackage{amsmath}
 
\usepackage{amsfonts}
 
\usepackage{parskip}
 
\usepackage{marvosym} %Lightning symbol
 
\usepackage[usenames,dvipsnames]{color}
 
\usepackage[hidelinks]{hyperref}
 
\renewcommand*{\familydefault}{\sfdefault}
 

	
 
\usepackage{bbm} %For \mathbbm{1}
 
%\usepackage{bbold}
 
\usepackage{tikz}
 

	
 
\begin{document}
 

	
 
\begin{tikzpicture}
 
    \draw[gray] (0,0) -- (10,0);
 
    \draw[dotted] (0,2) -- (10,2);
 
    \draw[gray] (0,2) arc (90:270:1);
 
    \draw[gray] (10,0) arc (-90:90:1);
 
    \foreach \x in {0,...,10} {
 
        \draw (\x,0) circle (0.04);
 
    }
 
    \foreach \a in {-3,...,3} {
 
        \draw (10,1)+({\a*20}:1) circle (0.04);
 
        \draw (0,1)+({180+\a*20}:1) circle (0.04);
 
    }
 

	
 
    \foreach \x in {0,...,10} {
 
        \draw (\x,0.3) node {$\x$};
 
    }
 

	
 
    \foreach \x in {2,4,6,7} {
 
        \draw[fill,red]  (\x,-0.5) circle (0.05);
 
        \draw[fill,blue] (\x,-1.0)+(-0.05,-0.05) rectangle +(0.05,0.05);
 
    }
 
    \foreach \x in {3,5,8} {
 
        \draw (\x,-1.5) circle (0.07);
 
    }
 
    \draw[fill,red] (9,-0.5) circle (0.05);
 
    \draw (2,1) node {$I_\mathrm{min}$};
 
    \draw (9,1) node {$I_\mathrm{max}$};
 

	
 
    \draw (10.7,-0.2) rectangle (12.0,-1.8);
 

	
 
    \draw[fill,red] (11,-0.5) circle (0.05);
 
    \draw (11.5,-0.5) node {$I$};
 

	
 
    \draw[fill,blue] (11,-1.0)+(-0.05,-0.05) rectangle +(0.05,0.05);
 
    \draw (11.5,-1.0) node {$I'$};
 

	
 
    \draw (11,-1.5) circle (0.07);
 
    \draw (11.6,-1.5) node {$I_{><}$};
 

	
 
    \draw (5,1) node {$k$};
 
\end{tikzpicture}
 

	
 
\end{document}
main.tex
Show inline comments
 
@@ -377,206 +377,212 @@ For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits int
 
\]
 
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
\[
 
	\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    = \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
\]
 
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have 
 
\begin{align*}
 
    \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    &= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= R_{b_1} + \mathcal{O}(p^k)
 
\end{align*}
 
we can do the same with the second term and this proves the claim.
 
\end{proof}
 

	
 
~\\
 
\textbf{Proof of claim \ref{claim:weakcancel}}: We can assume $C$ consists of a group on the left with $l$ slots and a group on the right with $r$ slots (so $r+l=|C|$), with a gap of size $k=\mathrm{gap}(C)$ between these groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $f=(a,b)\in\{0,1'\}^{l+r}$. The initial probability of such a state $C(a,b)$ is $\rho_{C(a,b)} = (-1)^{|a|+|b|} p^{r+l}$ and by claim \ref{claim:expectationsum} we know $R_{C(a,b)} = R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k)$ where $C(a)$ indicates that only the left slots have been filled by $a$ and the other slots are filled with $1$s. The total contribution of these configurations is therefore
 
\begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}
 
    &= \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k) \right) \\
 
    &=\;\;\; p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_{C(a)} \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\
 
    &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_{C(b)} \sum_{a\in\{0,1'\}^l} (-1)^{|a|}
 
        + \mathcal{O}(p^{r+l+k})\\
 
    &= 0 + \mathcal{O}(p^{|C|+k})
 
\end{align*}
 
where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$.
 

	
 
\newpage
 
\subsection{Proving the strong cancellation claim}
 
It is useful to introduce some new notation:
 
\begin{definition}[Events conditioned on starting state] \label{def:conditionedevents}
 
    For any state $b\in\{0,1\}^n$ and any event $A$ (where an event is a subset of all possible paths of the Markov Chain), define
 
    \begin{align*}
 
        \mathbb{P}_b(A) &= \mathbb{P}(A \;|\; \text{start in }b) \\
 
        R_{b,A} &= \mathbb{E}( \#resamples \;|\; A \; \& \; \text{start in }b)
 
    \end{align*}
 
\end{definition}
 
\begin{definition}[Vertex visiting event] \label{def:visitingResamplings}
 
    Denote by $\mathrm{Z}^{(j)}$ the event that site $j$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(j)}$, i.e. the event that site $j$ does \emph{not} become zero before it terminates.
 
\end{definition}
 
\begin{figure}
 
	\begin{center}
 
    	\includegraphics{diagram_groups.pdf}
 
    \end{center}
 
    \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $j_1,j_2$.}
 
\end{figure}
 
\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices `inbetween' the groups as shown in the figure. Then we have
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $j_1,j_2$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2})
 
        \mathbb{P}_b(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}, A_1, A_2)
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2})
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}, A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}) \\
 
        R_{b,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}}
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}, A_2) \\
 
        R_{b,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2},A_1,A_2}
 
        &=
 
        R_{b_1,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}}
 
        R_{b_1,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2},A_1}
 
        \; + \;
 
        R_{b_2,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}}
 
        R_{b_2,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2},A_2}
 
    \end{align*}
 
    up to any order in $p$.
 
\end{lemma}
 
The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the circle are independent. 
 

	
 
\begin{proof}
 
    For clarity we do the proof for the infinite line, when there is only one index. Simply replace $\mathrm{NZ}_j$ by $\mathrm{NZ}_{j_1}\cap\mathrm{NZ}_{j_2}$ for the case of the circle.
 

	
 
    Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if its ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ by simply concatenating the resampling positions. By the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain
 
    Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if $r_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Note that now $\xi_1$ is a path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.  Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ by simply concatenating the resampling positions. By the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}_j)
 
        = \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi]
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j}}
 
          \sum_{\substack{\xi_2\in\paths{b_1}\\\xi_2 \in \mathrm{NZ}_j}}
 
        \mathbb{P}_b(\mathrm{NZ}_j,A_1,A_2)
 
        = \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j\cap A_1\cap A_2}} \mathbb{P}[\xi]
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j\cap A_1}}
 
          \sum_{\substack{\xi_2\in\paths{b_1}\\\xi_2 \in \mathrm{NZ}_j\cap A_2}}
 
        \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2] \\
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_j)
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_j,A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_j).
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_j,A_2).
 
    \end{align*}
 
    For the second equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}_j) R_{b,\mathrm{NZ}_j}
 
        := \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi] |\xi| 
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j}}
 
          \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}_j}}
 
        \mathbb{P}_b(\mathrm{NZ}_j,A_1,A_2) R_{b,\mathrm{NZ}_j,A_1,A_2}
 
        &:= \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j\cap A_1}}
 
          \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}_j\cap A_2}}
 
        \mathbb{P}[\xi_1]\mathbb{P}[\xi_2] (|\xi_1| + |\xi_2|) \\
 
        &=
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_j) \mathbb{P}_{b_1}(\mathrm{NZ}_j) R_{b_1,\mathrm{NZ}_j}
 
        \; + \;
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_j) \mathbb{P}_{b_2}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j} .
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_j,A_2) \mathbb{P}_{b_1}(\mathrm{NZ}_j,A_1) R_{b_1,\mathrm{NZ}_j,A_1} \\
 
        &\quad +
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_j,A_1) \mathbb{P}_{b_2}(\mathrm{NZ}_j,A_2) R_{b_2,\mathrm{NZ}_j,A_2} .
 
    \end{align*}
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_j)$ and using the first equality gives the desired result.
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_j,A_1,A_2)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 
\begin{comment}
 
TEST: Although a proof of claim \ref{claim:expectationsum} was already given, I'm trying to prove it in an alternate way using claim \ref{claim:eventindependence}.
 

	
 
~
 

	
 
Assume that $b_1$ ranges up to site $0$, the gap ranges from sites $1,...,k$ and $b_2$ ranges from site $k+1$ and onwards. For $j=1,...,k$ define the ``partial-zeros'' event $\mathrm{PZ}_j = \mathrm{Z}_1 \cap \mathrm{Z}_2 \cap ... \cap \mathrm{Z}_{j-1} \cap \mathrm{NZ}_j$ i.e. the first $j-1$ sites of the gap become zero and site $j$ does not become zero. Also define the ``all-zeros'' event $\mathrm{AZ} = \mathrm{Z}_1 \cap ... \cap \mathrm{Z}_k$, where all sites of the gap become zero. Note that these events partition the space, so we have for all $b$ that $\sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) = 1 - \mathbb{P}_b(\mathrm{AZ}) = 1 - \mathcal{O}(p^k)$.
 

	
 
~
 

	
 
Furthermore, if site $j$ becomes zero when starting from $b_1$ it means all sites to the left of $j$ become zero as well. Similarly, from $b_2$ it implies all the sites to the right of $j$ become zero.
 
Because of that, we have
 
\begin{align*}
 
    \mathbb{P}_{b_1}(\mathrm{PZ}_j) &= \mathbb{P}_{b_1}(\mathrm{Z}_{j-1} \cap \mathrm{NZ}_j) = \mathcal{O}(p^{j-1}) \\
 
    \mathbb{P}_{b_2}(\mathrm{NZ}_j) &= 1 - \mathbb{P}_{b_2}(\mathrm{Z}_j) = 1 - \mathcal{O}(p^{k-j+1})
 
\end{align*}
 
Following the proof of claim \ref{claim:eventindependence} we also have
 
\begin{align*}
 
    \mathbb{P}_b(\mathrm{PZ}_{j})
 
    &=
 
    \mathbb{P}_{b_1}(\mathrm{PZ}_{j})
 
    \; \cdot \;
 
    \mathbb{P}_{b_2}(\mathrm{NZ}_{j}) \\
 
    R_{b,\mathrm{PZ}_{j}}
 
    &=
 
    R_{b_1,\mathrm{PZ}_{j}}
 
    \; + \;
 
    R_{b_2,\mathrm{NZ}_{j}}
 
\end{align*}
 

	
 

	
 
Now observe that
 
\begin{align*}
 
    R_b &= \sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) R_{b,\mathrm{PZ}_j} + \mathbb{P}_b(\mathrm{AZ}) R_{b,\mathrm{AZ}} \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{NZ}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        - \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{Z}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= R_{b_1}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &\overset{???}{=} R_{b_1} + R_{b_2} + \mathcal{O}(p^k)
 
\end{align*}
 
\end{comment}
 

	
 
Consider the chain (instead of the cycle) for simplicity with vertices identified by $\mathbb{Z}$.
 
\begin{definition}[Starting state dependent probability distribution.]
 
	Let $I\subset\mathbb{Z}$ be a finite set of vertices.
 
    Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. Define $P_I(A)=P_{b_I}(A)$ where the latter is defined in Definition \ref{def:conditionedevents}, i.e. the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. 
 
\end{definition}
 

	
 
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
 
\begin{lemma}\label{lemma:probIndep}
 
	Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
 
	Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$.
 
    Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. These definitions are illustraded in Figure \ref{fig:lemmaillustration}.
 
	Then $P_{I}(Z^{(0)})=P_{I'}(Z^{(0)}) + O(p^{I_{\max}+1-|I|})$.
 
\end{lemma}
 
\begin{proof}
 
\begin{figure}
 
	\begin{center}
 
    	\includegraphics{diagram_proborders.pdf}
 
    \end{center}
 
    \caption{\label{fig:lemmaillustration} Illustration of setup of Lemma \ref{lemma:probIndep}.}
 
\end{figure}
 
	The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples vertex $0$ to zero must produce at least $I_{\max}$ zeroes in-between.
 
	
 
    Induction step: For an event $A$ and $k>0$ let us denote $A_k = A\cap\left(\cap_{j=0}^{k-1} \mathrm{Z}^{(j)}\right)\cap \mathrm{NZ}^{(k)}$, i.e. $A_k$ is the event $A$ \emph{and} ``Each vertex in $0,1,2,\ldots, k-1$ becomes $0$ at some point before termination (either by resampling or initialisation), but vertex $k$ does not''. Observe that these events form a partition, so $Z^{(0)}=\dot{\bigcup}_{k=1}^{\infty}Z^{(0)}_k$.
 
    Let $I_{<k}:=I\cap[1,k-1]$ and similarly $I_{>k}:=I\setminus[1,k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ (note that $I_{><} = \gaps{I}$ as shown in Figure \ref{fig:diametergap}). Suppose we have proven the claim up to $|I|-1$, then the induction step can be shown by
 
	\begin{align*}
 
		P_{I}(Z^{(0)})
 
		&=\sum_{k=1}^{\infty}P(Z^{(0)}_k) \tag{the events are a partition}\\
 
        &=\sum_{k\in \mathbb{N}\setminus I}P(Z^{(0)}_k) \tag{$\mathbb{P}(A_k)=0$ for $k\in I$}\\
 
        &=\sum_{k\in\mathbb{N}\setminus I}P_{I_{<k}}(Z^{(0)}_k)\cdot P_{I_{>k}}(\mathrm{NZ}^{(k)}) \tag{by Claim~\ref{claim:eventindependence}}\\
 
        &=\sum_{k\in I_{><}}P_{I_{<k}}(Z^{(0)}_k)\cdot P_{I_{>k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|})
 
		\tag{$k<I_{\min}\Rightarrow P_{I_{<k}}(Z^{(0)}_k)=0$}\\
 
        &=\sum_{k\in I_{><}}P_{I'_{<k}}(Z^{(0)}_k)\cdot P_{I_{>k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{$k< I_{\max}\Rightarrow I_{<k}=I'_{<k}$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(Z^{(0)}_k)\cdot
 
        \left(P_{I'_{>k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{by induction, since for $k>I_{\min}$ we have $|I_{<k}|<|I|$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(Z^{(0)}_k)\cdot
 
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{as $P_{I'_{<k}}(Z^{(0)}_k)=\mathcal{O}(p^{k-|I'_{<k}|})$}\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I'_{<k}}(Z^{(0)}_k)\cdot
 
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\
 
		&=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{<k}}(Z^{(0)}_k)\cdot
 
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{$k=I_{\max}\Rightarrow P_{I'_{<k}}(Z^{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
 
		&=P_{I'}(Z^{(0)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{analogously to the beginning}			
 
	\end{align*}
 
\end{proof}
 

	
 
	The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling. 
 
	
 
	Also this claim finally ``sees'' how many empty places are between slots. These properties make it possible to use this lemma to prove the sought linear bound. We show it for the infinite chain, but with a little care it should also translate to the circle.
 

	
 
\begin{definition}[Connected patches]
 
	Let $\mathcal{P}\subset 2^{\mathbb{Z}}$ be a finite system of finite subsets of $\mathbb{Z}$. We say that the patch set of a resample sequence is $\mathcal{P}$,
 
	if the connected components of the vertices that have ever become $0$ are exactly the elements of $\mathcal{P}$. We denote by $A^{(\mathcal{P})}$ the event that the set of patches is $\mathcal{P}$. For a patch $P$ let $A^{(P)}=\bigcup_{\mathcal{P}:P\in \mathcal{P}}A^{(\mathcal{P})}$.
 
\end{definition} 
 
Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \emph{exactly} $\mathcal{P}$ whereas $A^{(P)}$ is the event that one of the patches is equal to $P$ but there can be other patches as well.
 

	
 
\begin{definition}[Conditional expectations]
 
	Let $S\subset\mathbb{Z}$ be a finite slot configuration, and for $f\in\{0,1'\}^{|S|}$ let $I:=S(f)$ be the set of vertices filled with particles. 
 
	Then we define
 
	$$R_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}].$$
 
	For a patch set $\mathcal{P}$ and some $P\in\mathcal{P}$ we define
 
	$$R^{(\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}|A^{(\mathcal{P})}]$$	
 
	and 
 
	$$R^{(P,\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(\mathcal{P})}]$$		
 
	finally
 
	$$R^{(P)}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(P)}].$$	
 
\end{definition} 
 

	
0 comments (0 inline, 0 general)