Files
@ 6fc38a4beacc
Branch filter:
Location: AENC/resampling_chain/exact/compute_linesegment.m
6fc38a4beacc
19.4 KiB
application/vnd.wolfram.mathematica.package
Update README
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | (* ::Package:: *)
(* ::Section:: *)
(*Choice of symbols*)
(* ::Text:: *)
(*Sample a 0=BAD with probability p*)
(*Sample a 1=GOOD with probability 1-p = q*)
(*Pick a random 0 and resample.*)
(*All-1 state is the final good state.*)
(* ::Text:: *)
(*Goal: compute P(Z^n | start in 011..11) on the finite chain {1,...,n}*)
(*Method: sum over (k>=1) of P(vertex n gets zero for the first time at step k)*)
(*Let M be the Markov Chain on n-1 vertices such that if site n becomes zero, then it goes to a special state with no outgoing arrows*)
(*Furthermore the all-good state has no self-loop (but has incoming paths*)
(*This last thing seems like it is not required but removes the 1 eigenvalue*)
(*so I guess it is good for inverting*)
(*Let si be the initial state, let sf be the final special state*)
(*Goal is then to compute sum over (k>=1) of sf . M^k . si*)
(*This is equal to sf . (1 - M)^(-1) . si - sf . si*)
(*which is equal to sf . (1 - M)^(-1)*)
(* ::Chapter:: *)
(*Markov Chain Matrix*)
(* Matrix as described above! *)
generateLeakingMatrix[n_,p_]:=Module[{mcM,bits,numBads,j1,j2,j3,newbits,prob},
n = n-1; (* See description above *)
mcM=SparseArray[{},{2^n+1,2^n+1},0];
Do[
(* Compute neighbours of i *)
bits=IntegerDigits[i,2,n];
numBads=Count[bits,0];
(* Special cases: j==1 and j==n *)
If[bits[[1]]==0, (* j==1 *)
newbits=bits;
Do[
newbits[[{1,2}]]={b1,b2};
prob=((1-p)^(b1+b2)*(p)^(2-(b1+b2)))/numBads;
(* Set the matrix entry *)
mcM[[i+1,FromDigits[newbits,2]+1]]+=prob;
,{b1,0,1},{b2,0,1}];
];
If[bits[[n]]==0, (* j==n *)
(* This 'n' is actually the n-1 vertex. So we check if it sets the real n vertex to zero. *)
(* Potentially go into special state *)
newbits=bits;
Do[
prob=((1-p)^(b1+b2+b3)*(p)^(3-(b1+b2+b3)))/numBads;
If[b3==0,
(* Special state *)
mcM[[i+1,-1]]+=prob;
,
(* Normal state *)
newbits[[{n-1,n}]]={b1,b2};
(* Set the matrix entry *)
mcM[[i+1,FromDigits[newbits,2]+1]]+=prob;
];
,{b1,0,1},{b2,0,1},{b3,0,1}];
];
Do[ (* 2 <= j <= n-1 *)
(* For all sites, check if it is BAD *)
If[bits[[j]]==0,
newbits=bits;
Do[
newbits[[{j-1,j,j+1}]]={b1,b2,b3};
prob=((1-p)^(b1+b2+b3)*(p)^(3-(b1+b2+b3)))/numBads;
(* Set the matrix entry *)
mcM[[i+1,FromDigits[newbits,2]+1]]+=prob;
,{b1,0,1},{b2,0,1},{b3,0,1}];
]; (* endif bits[[j]] *)
,{j,2,n-1}];
,{i,0,2^n-1}];
mcM
]
(* ::Section:: *)
(*Symbolic evaluation*)
(* ::Text:: *)
(*Let M1 be the process without the self-loop at the all-1 state but with paths towards that state.*)
(*Let M2 be the process with the all-1 state and all its incoming arrows completely removed.*)
(*Let n.R be the expected number of resamples times n and \[Rho] the initial state. Let J be a vector with all entries equal to 1 with size matching the equation.*)
(*Then we have the following.*)
(*Note that in case 1 we have \[Rho]\[CenterDot]J=1 but in case 2 we have \[Rho]\[CenterDot]J=1-(1-p)^n*)
(* ::DisplayFormula:: *)
(*nR=Subscript[sum, k>=1] P[k more or resamples]*)
(*nR=Subscript[sum, k>=1] \[Rho]\[CenterDot]*)
(*\!\(\*SubsuperscriptBox[\(M\), \(1\), \(k\)]\)\[CenterDot]J*)
(*nR=Subscript[sum, k>=0] \[Rho]\[CenterDot]*)
(*\!\(\*SubsuperscriptBox[\(M\), \(2\), \(k\)]\)\[CenterDot]J*)
(*nR=\[Rho]\[CenterDot]1/(Id-Subscript[M, 1])\[CenterDot]J-\[Rho].J*)
(*nR=\[Rho]\[CenterDot]1/(Id-Subscript[M, 2])\[CenterDot]J*)
(* ::Text:: *)
(*So we need to solve a . (Id-M)^-1 . b*)
(*We do this by solving (Id-M).x = b for x, and then computing a.x*)
Mfull=generateMatrix[nSites,p];
Mleak1=Mfull;
Mleak1[[-1,-1]]=0; (* Remove the self loop from the all-1 state *)
Mleak2=Mfull[[;;-1,;;-1]]; (* Completely remove all-1 state *)
(* ::Subsection:: *)
(*Contributions from specific starting states*)
slotPositions={3};
configuration=ConstantArray[1,nSites];
configuration[[slotPositions]]=0;
initialState2=ConstantArray[0,2^nSites];
initialState2[[FromDigits[configuration,2]+1]]=1;
(* ::Subsection:: *)
(*Expected number of resamples using inverse method*)
(* This function definition causes automatic memoization of results *)
getIdMinusM1[n_]:=getIdMinusM1[n]=Module[{nSites,Mfull,Mleak1,IdMinusM1},
nSites=n;
PrintTemporary["Generating matrix (Id-M) for n = ",n," and general p."];
Mfull=generateMatrix[nSites,p];
Mleak1=Mfull;
Mleak1[[-1,-1]]=0; (* Remove the self loop from the all-1 state *)
IdMinusM1=IdentityMatrix[2^nSites,SparseArray]-Mleak1;
IdMinusM1
]
(* Replacement rules do not work on sparsearrays. Instead we use this, taken shamelessly from stackoverflow *)
ReplaceElement[s_SparseArray, rule_]:=SparseArray[ArrayRules[s]/.rule,Dimensions[s]]
computeFullExpression[n_,pValue_]:=Module[{nSites,initialState,IdMinusM1,inv1,J},
(*PrintTemporary["Generating initial state for n = ",n,", p = ",pValue];*)
nSites=n;
initialState=Table[numBads=Count[IntegerDigits[i,2,nSites],0]; ((pValue)^(numBads)*(1-pValue)^(nSites-numBads)) , {i,0,2^nSites-1}];
(*PrintTemporary["Getting (Id-M) matrix."];*)
IdMinusM1=getIdMinusM1[n];
(*PrintTemporary["Entering p into matrix"];*)
IdMinusM1=Simplify[ReplaceElement[IdMinusM1,p->pValue]];
J=ConstantArray[1,2^nSites];
PrintTemporary["Solving (Id-M).x = b for n = ",n," , p = ",pValue];
inv1=LinearSolve[IdMinusM1,J];
(*PrintTemporary["Computing final inner product"];*)
Simplify[(initialState.inv1-1)/n]
]
(expected=computeFullExpression[9,2/10])//AbsoluteTiming
Simplify[expected]
FullSimplify[expected]
Simplify[expected/nSites]
FullSimplify[expected/nSites]
(* ::Subsection:: *)
(*Expected number of resamples using power series method*)
(* ::Text:: *)
(*Using the expression for M1 as above.*)
computeSeries[n_,maxPower_]:=Module[{nSites,initialState,Mfull,Mleak1,nRsum,curState},
PrintTemporary["Generating matrix M for n = ",n];
nSites=n;
initialState=Table[numBads=Count[IntegerDigits[i,2,nSites],0]; ((p)^(numBads)*(1-p)^(nSites-numBads)) , {i,0,2^nSites-1}];
Mfull=generateMatrix[nSites,p];
Mleak1=Mfull;
Mleak1[[-1,-1]]=0; (* Remove the self loop from the all-1 state *)
PrintTemporary["Computing M^k, for k ="];
nRsum=0;
curState=initialState;
Monitor[Do[
curState=Simplify[curState.Mleak1];
(* nRsum+=curState.ConstantArray[1,2^nSites]; (* curState . J *) *)
nRsum += Total[curState];
,{power,maxPower}],power];
Series[nRsum/n,{p,0,maxPower}]
]
allSeries=Table[computeSeries[n,20],{n,3,7}];
computeSeries[8,20]
(* ::Subsection:: *)
(*Compute and save coefficients*)
getRandom[]:=(Floor[RandomReal[]*10000000]/10000000);
pvalues=Table[getRandom[],{i,1,100}];
values1=Map[{#,computeFullExpression[10,#]}&,pvalues];
For[i=1,i<500,i++,
pValue=0/1000+i/500;
Rvalue=computeFullExpression[12,pValue];
PutAppend[{12,pValue,Rvalue},"functionValuesN12.m"]
PutAppend[",","functionValuesN12.m"]
]
For[i=1,i<800,i++,
pValue=0/1000+i/800;
Rvalue=computeFullExpression[13,pValue];
PutAppend[{13,pValue,Rvalue},"functionValuesN13.m"]
]
(* ::Section:: *)
(*Saved results - Expected number of resamples*)
(* expectx is for n=x. In these, p is the probability of sampling a GOOD instead of a BAD. *)
expect3=-1+1/p^3;
expect4=2/3 (-3+1/p^4+2/p);
expect5=(6-p+p^2+15 p^3+25 p^4-46 p^5+6 p^6-6 p^7)/(15 p^5+3 p^7);
expect6=-((-36-4 p-9 p^2-106 p^3-212 p^4-472 p^5+494 p^6+56 p^7+222 p^8+60 p^9+43 p^10-38 p^11+2 p^12)/(p^6 (162+74 p+97 p^2+33 p^3+7 p^4-13 p^5)));
expectArray1={expect3,expect4,expect5,expect6};
expectArray2={expect3/3,expect4/4,expect5/5,expect6/6};
Plot[expectArray2,{p,0,1},PlotRange->{0,5}]
(* n is already divided out!! and p is probability of BAD *)
expect3new=1/3 (-1+1/(1-p)^3);
expect4new=1/6 (-3+1/(1-p)^4+2/(1-p));
expect5new=(-((p (90-300 p+435 p^2-325 p^3+136 p^4-36 p^5+6 p^6))/(15 (-1+p)^5 (6-2 p+p^2))));
expect6new=(-((p (-2160+10620 p-22968 p^2+27378 p^3-18524 p^4+5464 p^5+1804 p^6-2583 p^7+1160 p^8-243 p^9+14 p^10+2 p^11))/(6 (-1+p)^6 (360-330 p+108 p^2+69 p^3-58 p^4+13 p^5))));
expect7new=(-((p (6804000-51256800 p+181666800 p^2-401090760 p^3+619134390 p^4-711799410 p^5+634209054 p^6-449931963 p^7+258856333 p^8-121948365 p^9+47013236 p^10-14674393 p^11+3649155 p^12-711665 p^13+106776 p^14-11508 p^15+672 p^16))/(21 (-1+p)^7 (324000-820800 p+1090800 p^2-930360 p^3+582390 p^4-286260 p^5+110674 p^6-32233 p^7+6767 p^8-995 p^9+81 p^10))));
expectArray={expect3new,expect4new,expect5new,expect6new,expect7new};
Plot[expectArray,{p,0,1},PlotRange->{0,100}]
expect14partial=0 + 1 p^1 + 2 p^2 + 11/3 p^3 + 58/9 p^4 + 997/90 p^5 + 151957/8100 p^6 + 53492437/1701000 p^7 + 4671301969/89302500 p^8 + 5190549604343/60011280000 p^9 + 5979070536041027/42007896000000 p^10 + 135837147267480716807/582229438560000000 p^11 + 10253109683219103482669/26899000061472000000 p^12 + 150493768190667835592067474011/242333091553801248000000000 p^13 + 88145539086070409290770156317495909/87327152872327817729280000000000 p^14;
SeriesCoefficient[expect3new,{p,0,k},Assumptions->k>0]
SeriesCoefficient[expect4new,{p,0,k},Assumptions->k>0]
SeriesCoefficient[expect5new,{p,0,k},Assumptions->k>0]
a=Table[SeriesCoefficient[expect4new-expect3new,{p,0,k},Assumptions->k>0],{k,1,20}]
b=Table[SeriesCoefficient[expect5new-expect4new,{p,0,k},Assumptions->k>0],{k,1,20}]
c=Table[SeriesCoefficient[expect6new-expect5new,{p,0,k},Assumptions->k>0],{k,1,20}]
d=Table[SeriesCoefficient[expect7new-expect6new,{p,0,k},Assumptions->k>0],{k,1,20}]
TableForm[{a,b,c,d}//N]
(* ::Subsection:: *)
(*Verify Andras' rational functions*)
getRandom[]:=(Floor[RandomReal[]*10000000]/10000000)
pvalues=Table[getRandom[],{i,1,100}]
values1=Map[{#,computeFullExpression[10,#]}&,pvalues];
values2=Map[{#,(1/10)*expect10test/.{p->(1-#)}}&,pvalues];
values2-values1
(* ::Subsection:: *)
(*Investigate if all coefficients are non-negative*)
(* These are from Andras' file. Not divided by n yet and they are p\[Rule](1-p) *)
expect7test=-((-1 + p)*(15552 + p*(23760 + p*(34812 + p*(94908 + p*(222281 + p*(529516 + p*(1244215 + p*(1181257 + p*(1303681 + p*(1078303 + p*(608581 + p*(301063 + p*(101026 + p*(48821 + 12*p*(1233 + 7*p*(9 + 8*p)))))))))))))))))/(3*p^7*(44064 + p*(47616 + p*(71978 + p*(72983 + p*(48375 + p*(25115 + p*(7949 + p*(4197 + p*(1457 + p*(185 + 81*p)))))))))));
expect8test=(2*(-1 + p)*(44789760 + p*(139968000 + p*(303730560 + p*(679126512 + p*(1564082280 + p*(3726406168 + p*(8981205734 + p*(21485730797 + p*(38688270011 + p*(59923239869 + p*(79101090358 + p*(90734320109 + p*(89577453433 + p*(76026071407 + p*(55701775103 + p*(34983845549 + p*(18320307915 + p*(7343568305 + p*(1757401087 + p*(-223933111 + p*(-502060877 + p*(-315218371 + p*(-127155145 + p*(-39218742 + p*(-7828666 + p*(-1259858 + p*(-108337 + 150*p))))))))))))))))))))))))))))/(3*p^8*(-496419840 + p*(-1439176320 + p*(-3149570400 + p*(-5275650076 + p*(-7302622798 + p*(-8374860033 + p*(-8003980588 + p*(-6458041992 + p*(-4429656977 + p*(-2571384803 + p*(-1196664656 + p*(-388547559 + p*(-34974176 + p*(54650947 + p*(46874430 + p*(21894016 + p*(7362717 + p*(1657193 + p*(282806 + p*(27971 + 138*p)))))))))))))))))))));
expect9test=(14860167413760000 + p*(69215357553868800 + p*(200045951259770880 + p*(501753501908140032 + p*(1195146667726110720 + p*(2837237806479826944 + p*(6835141854725815296 + p*(16613543019874046208 + p*(40322016987813542144 + p*(87140086246363335040 + p*(166271656987524472832 + p*(279677853621781882688 + p*(415243711415104491744 + p*(542763239180836655456 + p*(618270674284253279912 + p*(599031597140865754981 + p*(463712082941731806804 + p*(226341699024787274328 + p*(-64228354607723832763 + p*(-339718231913772554127 + p*(-536556042700326483047 + p*(-619440820795896125668 + p*(-591727241700344933041 + p*(-487669723043225797092 + p*(-353188323854056822391 + p*(-226925248060543911149 + p*(-130068538893362461174 + p*(-66753544274542526574 + p*(-30769595187485936760 + p*(-12788017674210780563 + p*(-4816959007389203482 + p*(-1655060595318356059 + p*(-522904161346608018 + p*(-153811377319192586 + p*(-42983832966413783 + p*(-11758274800903707 + p*(-3227327741061583 + p*(-882100803393578 + p*(-228440163416365 + p*(-52518671538358 + p*(-10110092242971 + p*(-1527435215729 + p*(-166388566824 + p*(-11673329816 + p*(-406660450 + 4432849*p)))))))))))))))))))))))))))))))))))))))))))))/(2*p^9*(247979043717120000 + p*(1404556345973145600 + p*(4881679163642511360 + p*(12906262082477297664 + p*(28115590828074872832 + p*(52489318062390939648 + p*(85854608498957791872 + p*(124717889602448020720 + p*(162427702886973575968 + p*(190958305285669777432 + p*(203625593714258894940 + p*(197495414430604412153 + p*(174434489712187178104 + p*(140292913909359211099 + p*(102646528703039262092 + p*(68213672288407176716 + p*(41099902894845750809 + p*(22414213674226885613 + p*(11050572923278461790 + p*(4923881668005366819 + p*(1985990817617932439 + p*(728106834571938844 + p*(244474935800587786 + p*(76102417054683974 + p*(22376867005851128 + p*(6369114377239928 + p*(1798946431418834 + p*(509761338004573 + p*(142442762616972 + p*(37575586464977 + p*(8899420095010 + p*(1807947361702 + p*(299533377719 + p*(38240308283 + p*(3554076220 + p*(214908319 + 5480061*p)))))))))))))))))))))))))))))))))))));
expect10test=(29951249940995899392000000000000 + p*(321277074367082680811520000000000 + p*(1876043724828201407899238400000000 + p*(7957803700453574327899521024000000 + p*(27600849993152557107086371061760000 + p*(83708933060723217270945022476288000 + p*(232218200751572343369207785088614400 + p*(608803390669902070228281738846535680 + p*(1544273076828249644749847550461214720 + p*(3849000601054049367818531928453808128 + p*(9457009167395061143735316314450116608 + p*(22710137800601382492606555648833703936 + p*(52551319769714710101688154622944308224 + p*(115641157984597308322202359977324043776 + p*(239788039117985529108056897877275139072 + p*(466100810588291182793159375682571746048 + p*(847251806016175584466472956114635493248 + p*(1438845086263694938869869282245238450304 + p*(2281977933502502912556098358195689039488 + p*(3378207556119970655213352274466629112656 + p*(4662886865029498628962899390901557046004 + p*(5987475795830163704672450027075629130526 + p*(7123210965387283810827362410322037722354 + p*(7794836704260181065123102779965205340710 + p*(7743305046919138937831260351903602893220 + p*(6803120645273157342699268581459532854919 + p*(4969160722522289163522693119071239386755 + p*(2425833191587010847817187362952182398138 + p*(-478352352834109570300633185236348222377 + p*(-3308097287042200048938114586893251370936 + p*(-5647142522259365647779107129972197384766 + p*(-7197434992181972261186988755990921900697 + p*(-7839379187332261846531272309074275077586 + p*(-7637042760904826586923204492351454075152 + p*(-6793489561246748633179699757769394119944 + p*(-5578046078032320494940208847629640514464 + p*(-4252848140299219686443654842994289539291 + p*(-3020200540705779498941875503912519350604 + p*(-1999991026871906523995508917013136497134 + p*(-1234172886386747806789083278358669408871 + p*(-707890014436094626019080261007720401010 + p*(-375446170592945176587368390943415271029 + p*(-182392895811372280963423962179213451343 + p*(-79725884110136311249882273936589466620 + p*(-30193886820070827791743490097080535842 + p*(-8941903247106160500055796555591352006 + p*(-1194181997123529342246730283203054756 + p*(896587678060109594732754595405917406 + p*(1022852992210376792009315073725222268 + p*(684400659563903078679594347449757512 + p*(370212414902460927291178517581455088 + p*(174699951385056058300967356493852520 + p*(74011471448409088915716718895577422 + p*(28491927116198785339903578231282326 + p*(10006029890177055926113350394773918 + p*(3200260476270785946496244273521456 + p*(925386205163002054605998560468560 + p*(238206904285052006364586403532317 + p*(52866298651863763741544121057741 + p*(9348468391347117877049424284698 + p*(958858054559840471545883772371 + p*(-136926411301609161234965497492 + p*(-115008021854642384362351679374 + p*(-41244982952337852495390955333 + p*(-11070559287492334189423637514 + p*(-2447709113603523067317445528 + p*(-458350828193163804833495576 + p*(-72994618560338171901466600 + p*(-9788368655259968045182199 + p*(-1078274571766986784089992 + p*(-92853720471534248219698 + p*(-5575557597562066201327 + p*(-147991530451600663714 + 3*p*(2939473042278627387 + p*(332111127808852965 + 2*p*(3888241226376788 + 3*p*(-41445657273564 + 117378618257*p)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(3*p^10*(682638904905198206976000000000000 + p*(8173019706412830881218560000000000 + p*(53323699054157660941398835200000000 + p*(248891573008669764067233103872000000 + p*(924687407612579930813801724641280000 + p*(2891944600003682820203778769158144000 + p*(7875333215307845589347486063080243200 + p*(19092145163533430334925059167734333440 + p*(41842060723846599378217956818057134080 + p*(83819625249296263520678599475268452352 + p*(154744761966786179578080182564885237760 + p*(264929077641518034992054266706731634688 + p*(422646641464611331099548275766631199616 + p*(630658407565185428744866514944008740608 + p*(882809399516424423060949095297359647184 + p*(1162011757403374712933484162759274746352 + p*(1440861354989945223972829409569972470756 + p*(1685474601631641160870079255922808661076 + p*(1862019471896150106118299899011256684852 + p*(1944275887100004592293260532580143761700 + p*(1919928618321355019268022528887019266326 + p*(1793535536249536699497366468967249191017 + p*(1585197435822223572162425675827591318758 + p*(1325440982570820498930344210935822181206 + p*(1048072002217543081106112398597412481982 + p*(783251663870790984476513634219923281927 + p*(552662728415568107148138472304112723190 + p*(367644054985132215092587551798222270155 + p*(230074222242873458531674653777240431720 + p*(135022211219245045125800091088296752850 + p*(73954257805233177084811932744909118208 + p*(37520406174308360962398062351812812137 + p*(17409390768768132523512955359881317010 + p*(7212631289630161215602424043408525090 + p*(2527911717628399131459446318200577066 + p*(630521501315295907688039566779316660 + p*(-3264167000026769674250037142301412 + p*(-139693374141558418039783207724595386 + p*(-119984125642330341935345402175013164 + p*(-73648953735741925869248816811906408 + p*(-38131255307772761702405407482815932 + p*(-17517515974055060595862322054303126 + p*(-7290643414588233704648436825349684 + p*(-2773291843079741728329148625684886 + p*(-966453715014487415372765637669408 + p*(-307780848263943355417434290190728 + p*(-88890463102686920044975809291432 + p*(-22925956093782388618998098510906 + p*(-5118160244307518827820812609760 + p*(-917260979612371876699699161420 + p*(-98655372948554285790307210984 + p*(11501501864542733975686221040 + p*(10761940854651464305687453022 + p*(3945723859789135370872243241 + p*(1073726996470422065262668662 + p*(240103317502273227850391290 + p*(45421861294678062478428318 + p*(7302286255304887036723447 + p*(987936432020600117567806 + p*(109789200467587590966019 + p*(9555322669271838491048 + p*(585926357618901832414 + p*(17271126997972246952 + p*(-709836412858689543 + 2*p*(-46765727964771227 + 3*p*(-442866761590467 + 6322265536535*p)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))));
expectArray={expect3new,expect4new,expect5new,expect6new,expect7new};
expectArray=expectArray~Join~({expect7test/7,expect8test/8,expect9test/9,expect10test/10}/.{p->(1-p)});
Plot[expectArray,{p,0,1},PlotRange->{0,100},PlotLabels->Automatic]
denominators=Denominator/@expectArray;
sols=Map[N[Simplify[Solve[#==0,p]]]&,denominators];
sols2=sols[[All,All,1,2]];
norms=Map[Norm,sols2,{2}];
norms=Map[Sort,norms];
TableForm[norms]
|