Files @ 2c2c8fc81176
Branch filter:

Location: AENC/switchchain/cpp/switchchain.cpp - annotation

Tom Bannink
Add computation of degree-sequence-property and more
c039c549918d
c039c549918d
bfca8e3039c5
7bef7b203f4e
a79267af1717
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
c039c549918d
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
7bef7b203f4e
446bcd991614
7bef7b203f4e
7bef7b203f4e
446bcd991614
446bcd991614
446bcd991614
c039c549918d
a79267af1717
7bef7b203f4e
7bef7b203f4e
7bef7b203f4e
a79267af1717
446bcd991614
446bcd991614
446bcd991614
446bcd991614
a79267af1717
a79267af1717
446bcd991614
446bcd991614
446bcd991614
a79267af1717
a79267af1717
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
c039c549918d
c039c549918d
c039c549918d
c039c549918d
2c2c8fc81176
c039c549918d
a79267af1717
0f3a4ccb62ea
c039c549918d
c039c549918d
c039c549918d
c039c549918d
2c2c8fc81176
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
2c2c8fc81176
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
2c2c8fc81176
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
0f3a4ccb62ea
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
7bef7b203f4e
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
446bcd991614
2c2c8fc81176
2c2c8fc81176
bfca8e3039c5
2c2c8fc81176
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
bfca8e3039c5
446bcd991614
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
bfca8e3039c5
bfca8e3039c5
446bcd991614
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
c039c549918d
c039c549918d
446bcd991614
446bcd991614
#include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}

class SwitchChain {
  public:
    SwitchChain() : mt(std::random_device{}()), permutationDistribution(0, 2) {
        // random_device uses hardware entropy if available
        // std::random_device rd;
        // mt.seed(rd());
    }
    ~SwitchChain() {}

    bool initialize(const Graph& gstart) {
        if (gstart.edgeCount() == 0)
            return false;
        g = gstart;
        edgeDistribution.param(
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
        return true;
    }

    bool doMove() {
        Edge e1 = g.getEdge(edgeDistribution(mt));
        Edge e2 = g.getEdge(edgeDistribution(mt));
        // Keep regenerating while conflicting edges
        int timeout = 0;
        while (edgeConflicts(e1, e2)) {
            e1 = g.getEdge(edgeDistribution(mt));
            e2 = g.getEdge(edgeDistribution(mt));
            ++timeout;
            if (timeout % 100 == 0) {
                std::cerr << "Warning: sampled " << timeout
                          << " random edges but they keep conflicting.\n";
            }
        }
        // Consider one of the three possible permutations
        // 1) e1.u - e1.v and e2.u - e2.v (original)
        // 2) e1.u - e2.u and e1.v - e2.v
        // 3) e1.u - e2.v and e1.v - e2.u

        // Note that it might be that these new edges already exist
        // in which case we also reject the move
        // This is checked in exchangeEdges

        int perm = permutationDistribution(mt);
        if (perm == 0) // Original permutation
            return false;
        return g.exchangeEdges(e1, e2, perm == 1);
    }

    Graph g;
    std::mt19937 mt;
    std::uniform_int_distribution<> edgeDistribution;
    std::uniform_int_distribution<> permutationDistribution;
};

int main() {
    // Generate a random degree sequence
    std::mt19937 rng(std::random_device{}());

    // Goal:
    // Degrees follow a power-law distribution with some parameter tau
    // Expect:  #tri = const * n^{ something }
    // The goal is to find the 'something' by finding the number of triangles
    // for different values of n and tau
    float tauValues[] = {2.2f, 2.35f, 2.5f, 2.65f, 2.8f};

    Graph g;

    std::ofstream outfile("graphdata.m");
    outfile << '{';
    bool outputComma = false;

    for (int numVertices = 200; numVertices <= 1000; numVertices += 100) {
        for (float tau : tauValues) {

            DegreeSequence ds(numVertices);
            powerlaw_distribution degDist(tau, 1, numVertices);
            //std::poisson_distribution<> degDist(12);

            // For a single n,tau take samples over several instances of
            // the degree distribution
            for (int degreeSample = 0; degreeSample < 500; ++degreeSample) {
                // Generate a graph
                // might require multiple tries
                for (int i = 1; ; ++i) {
                    std::generate(ds.begin(), ds.end(),
                                  [&degDist, &rng] { return degDist(rng); });
                    if (g.createFromDegreeSequence(ds))
                        break;
                    // When 10 tries have not worked, output a warning
                    if (i % 10 == 0) {
                        std::cerr << "Warning: could not create graph from "
                                     "degree sequence. Trying again...\n";
                    }
                }

                SwitchChain chain;
                if (!chain.initialize(g)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    return 1;
                }

                std::cout << "Starting switch Markov chain with n = "
                          << numVertices << ", tau = " << tau << ". \t"
                          << std::flush;

                constexpr int mixingTime = 30000;
                constexpr int measureTime = 20000;
                constexpr int measureSkip =
                    200; // Take a sample every ... steps
                constexpr int measurements =
                    (measureTime - 1) / measureSkip + 1;
                int movesDone = 0;

                int triangles[measurements];

                for (int i = 0; i < mixingTime; ++i) {
                    if (chain.doMove())
                        ++movesDone;
                }
                for (int i = 0; i < measureTime; ++i) {
                    if (chain.doMove())
                        ++movesDone;
                    if (i % measureSkip == 0)
                        triangles[i / measureSkip] = chain.g.countTriangles();
                }

                std::cout << movesDone << '/' << mixingTime + measureTime
                          << " moves succeeded." << std::endl;

                if (outputComma)
                    outfile << ',';
                outputComma = true;

                std::sort(ds.begin(), ds.end());
                outfile << '{' << '{' << numVertices << ',' << tau << '}';
                outfile << ',' << triangles << ',' << ds << '}' << std::flush;
            }
        }
    }
    outfile << '}';
    return 0;
}