Files @ 2c2c8fc81176
Branch filter:

Location: AENC/switchchain/showgraphs.m - annotation

2c2c8fc81176 6.8 KiB application/vnd.wolfram.mathematica.package Show Source Show as Raw Download as Raw
Tom Bannink
Add computation of degree-sequence-property and more
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
2c2c8fc81176
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*TODO*)


(* ::Text:: *)
(*- Use different starting point for switch chain that is closer to uniform:*)
(*   Do configuration model, starting with the vertex with highest degree and keeping track of a "forbidden list" meaning dont pair something that is not allowed*)
(*   (a) How close is this to uniform ? At least w.r.t. the measure of #triangles*)
(*   (b) How often does this procedure work/fail. Might still be faster to do switchings from Erdos-Gallai.*)
(**)
(*- Improve runtime*)
(*   (a) Don't remove/add edges from the std::vector. Simply replace them*)
(*   (b) Better direct triangle counting? (I doubt it)*)
(*   (b') Better triangle counting by only keeping track of CHANGES in #triangles*)
(*   (c) Do not choose the three permutations with 1/3 probability: choose the "staying" one with a very low probability. Should still be a valid switch chain?*)
(**)
(*- Experimental mixing time as function of n. At (n,tau)=(1000,2.5) it seems to be between 10.000 and 20.000 steps.*)
(**)
(*- Count #moves that result in +-k triangles (one move could create many triangles at once!)*)


(* ::Subsection:: *)
(*Done*)


(* ::Text:: *)
(*- Do a single very long run: nothing weird seems to happen with the triangle counts. Tried 10 million steps.*)
(**)
(*- Compute  Sum over i<j<k  of  (1-Exp[- d_i d_j / (2E)]) * (1 - Exp[-d_j d_k / (2E)]) * (1 - Exp[-d_k d_i / (2E)]) .*)
(*  Computing the f(i,j) = (1-Exp[..]) terms is fine, but then computing Sum[ f(i,j) f(j,k) f(i,k) ) ] over n^3 entries is very slow.*)
(*  *)
(*  *)


(* ::Section:: *)
(*Visualize graphs*)


gsraw=Import[NotebookDirectory[]<>"graphdata.m"];


ListPlot[gsraw[[2]],Joined->True,PlotRange->All,AxesLabel->{"Step","Triangles"}]


gs=Map[Graph[#,GraphLayout->"CircularEmbedding"]&,gsraw[[1]]];
gs2=Map[Graph[#,GraphLayout->Automatic]&,gsraw[[1]]];


Grid[Partition[gs,10],Frame->All]


(* ::Section:: *)
(*Plot triangle counts*)


(* ::Subsection:: *)
(*Data import and data merge*)


gsraw=Import[NotebookDirectory[]<>"data/min_deg_two/graphdata_merged.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)


newData=Import[NotebookDirectory[]<>"graphdata_tau_multi4.m"];
mergedData=Import[NotebookDirectory[]<>"graphdata_merged.m"];
Export[NotebookDirectory[]<>"graphdata_merged_new.m",Join[mergedData,newData]]


(* ::Subsection:: *)
(*Plot empirical distribution of maximum degree*)


maxDegrees=Map[{#[[1]],Max[#[[3]]]}&,gsraw];
maxDegrees=GatherBy[maxDegrees,{#[[1,2]]&,#[[1,1]]&}];
(* maxDegrees[[ tau index, n index, run index,  ntau or dmax ]] *)


Histogram[maxDegrees[[1,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[2,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[3,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]


(* ::Subsection:: *)
(*Plot #trianges vs some degree-sequence-property*)


getProperty[ds1_]:=Module[{ds,n=Length[ds1],tmp=ConstantArray[0,{Length[ds1],Length[ds1]}]},
ds=N[ds1/Sqrt[N[Total[ds1]]]]; (* scale degrees by 1/Sqrt[total] *)
(* The next table contains unneeded entries, but its faster to have a square table for the sum *)
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n},{j,1,n}];
Sum[tmp[[i,j]]*tmp[[j,k]]*tmp[[i,k]],{i,3,n},{j,2,i-1},{k,1,j-1}] (* somehow i>j>k is about 60x faster than doing i<j<k !!! *)
(* This sparser table is slower
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n-1},{j,i+1,n}];
(* tmp[[a,b]] is now with  ds[[a]]*ds[[a+b]] *)
Sum[tmp[[i,j-i]]*tmp[[j,k-j]]*tmp[[i,k-i]],{i,1,n-2},{j,i+1,n-1},{k,j+1,n}]
*)
];


(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
avgAndProp=ParallelMap[{getProperty[#[[3]]],Mean[#[[2,1;;-1]]]}&,gdata[[2,4,1;;100]]];


Show[ListPlot[avgAndProp,AxesOrigin->{0,0},AxesLabel->{"degree-sequence-property","<#triangles>"},AspectRatio->1],Plot[x,{x,1,1000}]]


(* ::Subsection:: *)
(*Plot triangle count over "time" in Markov chain instances*)


numPlots=20;
selectedData=gsraw[[-numPlots;;-1]];
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
skipPts=Max[1,Round[maxTime/100]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;-1;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{minCount,maxCount},DataRange->{0,maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


(* ::Subsection:: *)
(*Plot average #triangles vs n*)


averages=Map[{#[[1]],Mean[#[[2,1;;-1]]]}&,gsraw];
(* averages=SortBy[averages,#[[1,1]]&]; (* Sort by n *) *)
averagesGrouped=GatherBy[averages,{#[[1,2]]&,#[[1,1]]&}]; (* Split by n,tau *)
(* averagesGrouped[[ tau index, n index, run index , {ntau, avgtri} ]] *)
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];
averagesErrorBars=Map[
{{#[[1,1,1]],Mean[#[[All,2]]]},
ErrorBar[StandardDeviation[#[[All,2]]]/Sqrt[Length[#]]]
}&,averagesGrouped,{2}];


ErrorListPlot[averagesErrorBars,Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]


ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]


averagesErrorBars=Map[
{{Log[#[[1,1,1]]],Log[Mean[#[[All,2]]]]},
ErrorBar[ (StandardDeviation[#[[All,2]]] )]
}&,averagesGrouped,{2}];


(* ::Subsection:: *)
(*Fitting the log-log-plot*)


loglogdata=Log[averagesErrorBars[[All,All,1]]];
fits=Map[Fit[#,{1,logn},logn]&,loglogdata];


Show[ListLogLogPlot[averagesErrorBars[[All,All,1]],PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels],Plot[fits,{logn,1,2000}]]


tauValues=averagesGrouped[[All,1,1,1,2]];
exponents=Transpose[{tauValues,fits[[All,2,1]]}];
Show[ListPlot[exponents,Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","triangle-law-exponent"}],Plot[3/2(3-tau),{tau,2,3}]]


(* ::Subsection:: *)
(*Plot #triangles distribution for specific (n,tau)*)


plotRangeByTau[tau_]:=Piecewise[{{{0,30000},tau<2.3},{{0,4000},2.3<tau<2.7},{{0,800},tau>2.7}},Automatic]
histograms=Map[Histogram[#[[All,2]],PlotRange->{plotRangeByTau[#[[1,1,2]]],Automatic}]&,averagesGrouped,{2}];
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];


(* TableForm[histograms,TableHeadings->{taulabels,nlabels}] *)
TableForm[Transpose[histograms],TableHeadings->{nlabels,taulabels}]