Files @ 2c2c8fc81176
Branch filter:

Location: AENC/switchchain/showgraphs.m

2c2c8fc81176 6.8 KiB application/vnd.wolfram.mathematica.package Show Annotation Show as Raw Download as Raw
Tom Bannink
Add computation of degree-sequence-property and more
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*TODO*)


(* ::Text:: *)
(*- Use different starting point for switch chain that is closer to uniform:*)
(*   Do configuration model, starting with the vertex with highest degree and keeping track of a "forbidden list" meaning dont pair something that is not allowed*)
(*   (a) How close is this to uniform ? At least w.r.t. the measure of #triangles*)
(*   (b) How often does this procedure work/fail. Might still be faster to do switchings from Erdos-Gallai.*)
(**)
(*- Improve runtime*)
(*   (a) Don't remove/add edges from the std::vector. Simply replace them*)
(*   (b) Better direct triangle counting? (I doubt it)*)
(*   (b') Better triangle counting by only keeping track of CHANGES in #triangles*)
(*   (c) Do not choose the three permutations with 1/3 probability: choose the "staying" one with a very low probability. Should still be a valid switch chain?*)
(**)
(*- Experimental mixing time as function of n. At (n,tau)=(1000,2.5) it seems to be between 10.000 and 20.000 steps.*)
(**)
(*- Count #moves that result in +-k triangles (one move could create many triangles at once!)*)


(* ::Subsection:: *)
(*Done*)


(* ::Text:: *)
(*- Do a single very long run: nothing weird seems to happen with the triangle counts. Tried 10 million steps.*)
(**)
(*- Compute  Sum over i<j<k  of  (1-Exp[- d_i d_j / (2E)]) * (1 - Exp[-d_j d_k / (2E)]) * (1 - Exp[-d_k d_i / (2E)]) .*)
(*  Computing the f(i,j) = (1-Exp[..]) terms is fine, but then computing Sum[ f(i,j) f(j,k) f(i,k) ) ] over n^3 entries is very slow.*)
(*  *)
(*  *)


(* ::Section:: *)
(*Visualize graphs*)


gsraw=Import[NotebookDirectory[]<>"graphdata.m"];


ListPlot[gsraw[[2]],Joined->True,PlotRange->All,AxesLabel->{"Step","Triangles"}]


gs=Map[Graph[#,GraphLayout->"CircularEmbedding"]&,gsraw[[1]]];
gs2=Map[Graph[#,GraphLayout->Automatic]&,gsraw[[1]]];


Grid[Partition[gs,10],Frame->All]


(* ::Section:: *)
(*Plot triangle counts*)


(* ::Subsection:: *)
(*Data import and data merge*)


gsraw=Import[NotebookDirectory[]<>"data/min_deg_two/graphdata_merged.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)


newData=Import[NotebookDirectory[]<>"graphdata_tau_multi4.m"];
mergedData=Import[NotebookDirectory[]<>"graphdata_merged.m"];
Export[NotebookDirectory[]<>"graphdata_merged_new.m",Join[mergedData,newData]]


(* ::Subsection:: *)
(*Plot empirical distribution of maximum degree*)


maxDegrees=Map[{#[[1]],Max[#[[3]]]}&,gsraw];
maxDegrees=GatherBy[maxDegrees,{#[[1,2]]&,#[[1,1]]&}];
(* maxDegrees[[ tau index, n index, run index,  ntau or dmax ]] *)


Histogram[maxDegrees[[1,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[2,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[3,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]


(* ::Subsection:: *)
(*Plot #trianges vs some degree-sequence-property*)


getProperty[ds1_]:=Module[{ds,n=Length[ds1],tmp=ConstantArray[0,{Length[ds1],Length[ds1]}]},
ds=N[ds1/Sqrt[N[Total[ds1]]]]; (* scale degrees by 1/Sqrt[total] *)
(* The next table contains unneeded entries, but its faster to have a square table for the sum *)
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n},{j,1,n}];
Sum[tmp[[i,j]]*tmp[[j,k]]*tmp[[i,k]],{i,3,n},{j,2,i-1},{k,1,j-1}] (* somehow i>j>k is about 60x faster than doing i<j<k !!! *)
(* This sparser table is slower
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n-1},{j,i+1,n}];
(* tmp[[a,b]] is now with  ds[[a]]*ds[[a+b]] *)
Sum[tmp[[i,j-i]]*tmp[[j,k-j]]*tmp[[i,k-i]],{i,1,n-2},{j,i+1,n-1},{k,j+1,n}]
*)
];


(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
avgAndProp=ParallelMap[{getProperty[#[[3]]],Mean[#[[2,1;;-1]]]}&,gdata[[2,4,1;;100]]];


Show[ListPlot[avgAndProp,AxesOrigin->{0,0},AxesLabel->{"degree-sequence-property","<#triangles>"},AspectRatio->1],Plot[x,{x,1,1000}]]


(* ::Subsection:: *)
(*Plot triangle count over "time" in Markov chain instances*)


numPlots=20;
selectedData=gsraw[[-numPlots;;-1]];
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
skipPts=Max[1,Round[maxTime/100]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;-1;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{minCount,maxCount},DataRange->{0,maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


(* ::Subsection:: *)
(*Plot average #triangles vs n*)


averages=Map[{#[[1]],Mean[#[[2,1;;-1]]]}&,gsraw];
(* averages=SortBy[averages,#[[1,1]]&]; (* Sort by n *) *)
averagesGrouped=GatherBy[averages,{#[[1,2]]&,#[[1,1]]&}]; (* Split by n,tau *)
(* averagesGrouped[[ tau index, n index, run index , {ntau, avgtri} ]] *)
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];
averagesErrorBars=Map[
{{#[[1,1,1]],Mean[#[[All,2]]]},
ErrorBar[StandardDeviation[#[[All,2]]]/Sqrt[Length[#]]]
}&,averagesGrouped,{2}];


ErrorListPlot[averagesErrorBars,Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]


ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]


averagesErrorBars=Map[
{{Log[#[[1,1,1]]],Log[Mean[#[[All,2]]]]},
ErrorBar[ (StandardDeviation[#[[All,2]]] )]
}&,averagesGrouped,{2}];


(* ::Subsection:: *)
(*Fitting the log-log-plot*)


loglogdata=Log[averagesErrorBars[[All,All,1]]];
fits=Map[Fit[#,{1,logn},logn]&,loglogdata];


Show[ListLogLogPlot[averagesErrorBars[[All,All,1]],PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels],Plot[fits,{logn,1,2000}]]


tauValues=averagesGrouped[[All,1,1,1,2]];
exponents=Transpose[{tauValues,fits[[All,2,1]]}];
Show[ListPlot[exponents,Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","triangle-law-exponent"}],Plot[3/2(3-tau),{tau,2,3}]]


(* ::Subsection:: *)
(*Plot #triangles distribution for specific (n,tau)*)


plotRangeByTau[tau_]:=Piecewise[{{{0,30000},tau<2.3},{{0,4000},2.3<tau<2.7},{{0,800},tau>2.7}},Automatic]
histograms=Map[Histogram[#[[All,2]],PlotRange->{plotRangeByTau[#[[1,1,2]]],Automatic}]&,averagesGrouped,{2}];
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];


(* TableForm[histograms,TableHeadings->{taulabels,nlabels}] *)
TableForm[Transpose[histograms],TableHeadings->{nlabels,taulabels}]