Files
@ 49fd15989dac
Branch filter:
Location: AENC/switchchain/cpp/switchchain.cpp - annotation
49fd15989dac
14.4 KiB
text/x-c++src
Add ETMT plots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | c039c549918d c039c549918d bfca8e3039c5 7bef7b203f4e 28b33414825e a79267af1717 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 c039c549918d 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 0290e63ba024 0290e63ba024 0290e63ba024 446bcd991614 7bef7b203f4e 7bef7b203f4e 446bcd991614 446bcd991614 446bcd991614 c039c549918d a79267af1717 7bef7b203f4e 7bef7b203f4e 7bef7b203f4e a79267af1717 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 446bcd991614 0290e63ba024 0290e63ba024 0290e63ba024 0290e63ba024 efc6996e97a2 446bcd991614 446bcd991614 446bcd991614 efc6996e97a2 0290e63ba024 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 0c08dc618491 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 0290e63ba024 446bcd991614 446bcd991614 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 257995a65b71 257995a65b71 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 28b33414825e 5da240b7cac5 5da240b7cac5 5da240b7cac5 fda8425fac05 fda8425fac05 257995a65b71 257995a65b71 5da240b7cac5 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 9df034849ada 9df034849ada 9df034849ada 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 5da240b7cac5 6218fdc51593 5da240b7cac5 5da240b7cac5 5da240b7cac5 6218fdc51593 5da240b7cac5 6218fdc51593 6218fdc51593 6218fdc51593 5da240b7cac5 6218fdc51593 6218fdc51593 6218fdc51593 5da240b7cac5 6218fdc51593 6218fdc51593 9df034849ada 9df034849ada 9df034849ada 9df034849ada 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 5da240b7cac5 5da240b7cac5 9df034849ada 9df034849ada 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 9df034849ada 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 9df034849ada 5da240b7cac5 5da240b7cac5 5da240b7cac5 6218fdc51593 5da240b7cac5 5da240b7cac5 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 257995a65b71 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 c039c549918d c039c549918d c039c549918d c039c549918d c039c549918d 9905828198ec c039c549918d a79267af1717 9df034849ada 5da240b7cac5 0f3a4ccb62ea 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 c039c549918d c039c549918d c039c549918d 257995a65b71 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 2c2c8fc81176 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 9df034849ada 9df034849ada 257995a65b71 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 5da240b7cac5 bfca8e3039c5 6218fdc51593 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 c039c549918d 0f3a4ccb62ea 257995a65b71 5da240b7cac5 9df034849ada 5da240b7cac5 9df034849ada 9df034849ada 9df034849ada 9df034849ada 5da240b7cac5 9df034849ada fda8425fac05 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada fda8425fac05 9df034849ada 9df034849ada 9df034849ada 9df034849ada 5da240b7cac5 5da240b7cac5 257995a65b71 257995a65b71 257995a65b71 5da240b7cac5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 7bef7b203f4e 0290e63ba024 0290e63ba024 446bcd991614 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 5da240b7cac5 fda8425fac05 5da240b7cac5 5da240b7cac5 5da240b7cac5 257995a65b71 257995a65b71 c039c549918d bfca8e3039c5 446bcd991614 bfca8e3039c5 257995a65b71 257995a65b71 257995a65b71 257995a65b71 bfca8e3039c5 257995a65b71 257995a65b71 257995a65b71 257995a65b71 efc6996e97a2 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 efc6996e97a2 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 bfca8e3039c5 c039c549918d 257995a65b71 257995a65b71 257995a65b71 257995a65b71 446bcd991614 bfca8e3039c5 59e3e241c8ea bfca8e3039c5 c039c549918d bfca8e3039c5 bfca8e3039c5 9df034849ada 9df034849ada 257995a65b71 9df034849ada 9df034849ada 9df034849ada 257995a65b71 257995a65b71 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 257995a65b71 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 257995a65b71 257995a65b71 257995a65b71 9df034849ada 9df034849ada 9df034849ada 9df034849ada 257995a65b71 bfca8e3039c5 c039c549918d c039c549918d c039c549918d 446bcd991614 446bcd991614 | #include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <array>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}
class SwitchChain {
public:
SwitchChain()
: mt(std::random_device{}()), permutationDistribution(0.5)
// permutationDistribution(0, 2)
{
// random_device uses hardware entropy if available
// std::random_device rd;
// mt.seed(rd());
}
~SwitchChain() {}
bool initialize(const Graph& gstart) {
if (gstart.edgeCount() == 0)
return false;
g = gstart;
edgeDistribution.param(
std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
return true;
}
bool doMove() {
int e1index, e2index;
int timeout = 0;
// Keep regenerating while conflicting edges
do {
e1index = edgeDistribution(mt);
e2index = edgeDistribution(mt);
if (++timeout % 100 == 0) {
std::cerr << "Warning: sampled " << timeout
<< " random edges but they keep conflicting.\n";
}
} while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
// Consider one of the three possible permutations
// 1) e1.u - e1.v and e2.u - e2.v (original)
// 2) e1.u - e2.u and e1.v - e2.v
// 3) e1.u - e2.v and e1.v - e2.u
bool switchType = permutationDistribution(mt);
return g.exchangeEdges(e1index, e2index, switchType);
}
Graph g;
std::mt19937 mt;
std::uniform_int_distribution<> edgeDistribution;
//std::uniform_int_distribution<> permutationDistribution;
std::bernoulli_distribution permutationDistribution;
};
void getTriangleDegrees(const Graph& g) {
std::vector<std::array<std::size_t,3>> trids;
const auto& adj = g.getAdj();
int triangles = 0;
for (auto& v : adj) {
for (unsigned int i = 0; i < v.size(); ++i) {
for (unsigned int j = i + 1; j < v.size(); ++j) {
if (g.hasEdge({v[i], v[j]})) {
++triangles;
std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
adj[v[j]].size()}};
std::sort(ds.begin(), ds.end());
trids.push_back(ds);
}
}
}
}
assert(triangles % 3 == 0);
return;
}
//
// Assumes degree sequence does NOT contain any zeroes!
//
// method2 = true -> take highest degree and finish its pairing completely
// method2 = false -> take new highest degree after every pairing
template <typename RNG>
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
// Similar to Havel-Hakimi but instead of pairing up with the highest ones
// that remain, simply pair up with random ones
unsigned int n = ds.size();
// degree, vertex index
std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
for (unsigned int i = 0; i < n; ++i) {
degrees[i].first = ds[i];
degrees[i].second = i;
}
std::vector<decltype(degrees.begin())> available;
available.reserve(n);
// Clear the graph
g.reset(n);
while (!degrees.empty()) {
std::shuffle(degrees.begin(), degrees.end(), rng);
// Get the highest degree:
// If there are multiple highest ones, we pick a random one,
// ensured by the shuffle.
// The shuffle is needed anyway for the remaining part
unsigned int dmax = 0;
auto uIter = degrees.begin();
for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
if (iter->first >= dmax) {
dmax = iter->first;
uIter = iter;
}
}
if (dmax > degrees.size() - 1)
return false;
if (dmax == 0) {
std::cerr << "ERROR 1 in GCM.\n";
}
unsigned int u = uIter->second;
if (method2) {
// Take the highest degree out of the vector
degrees.erase(uIter);
// Now assign randomly to the remaining vertices
// Since its shuffled, we can pick the first 'dmax' ones
auto vIter = degrees.begin();
while (dmax--) {
if (vIter->first == 0)
std::cerr << "ERROR in GCM2.\n";
if (!g.addEdge({u, vIter->second}))
std::cerr << "ERROR. Could not add edge in GCM2.\n";
vIter->first--;
if (vIter->first == 0)
vIter = degrees.erase(vIter);
else
vIter++;
}
} else {
// Pair with a random vertex that is not u itself and to which
// u has not paired yet!
available.clear();
for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
if (iter->second != u && !g.hasEdge({u, iter->second}))
available.push_back(iter);
}
if (available.empty())
return false;
std::uniform_int_distribution<> distr(0, available.size() - 1);
auto vIter = available[distr(rng)];
// pair u to v
if (vIter->first == 0)
std::cerr << "ERROR 2 in GCM1.\n";
if (!g.addEdge({u, vIter->second}))
std::cerr << "ERROR. Could not add edge in GCM1.\n";
// Purge anything with degree zero
// Be careful with invalidating the other iterator!
// Degree of u is always greater or equal to the degree of v
if (dmax == 1) {
// Remove both
// Erasure invalidates all iterators AFTER the erased one
if (vIter > uIter) {
degrees.erase(vIter);
degrees.erase(uIter);
} else {
degrees.erase(uIter);
degrees.erase(vIter);
}
} else {
// Remove only v if it reaches zero
uIter->first--;
vIter->first--;
if (vIter->first == 0)
degrees.erase(vIter);
}
//degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
// [](auto x) { return x.first == 0; }));
}
}
return true;
}
int main(int argc, char* argv[]) {
// Generate a random degree sequence
std::mt19937 rng(std::random_device{}());
// Goal:
// Degrees follow a power-law distribution with some parameter tau
// Expect: #tri = const * n^{ something }
// The goal is to find the 'something' by finding the number of triangles
// for different values of n and tau
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
Graph g;
Graph g1;
Graph g2;
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
outfile << '{';
bool outputComma = false;
for (int numVertices = 500; numVertices <= 500; numVertices += 1000) {
for (float tau : tauValues) {
DegreeSequence ds(numVertices);
powerlaw_distribution degDist(tau, 1, numVertices);
//std::poisson_distribution<> degDist(12);
// For a single n,tau take samples over several instances of
// the degree distribution.
// 500 samples seems to give reasonable results
for (int degreeSample = 0; degreeSample < 5; ++degreeSample) {
// Generate a graph
// might require multiple tries
for (int i = 1; ; ++i) {
std::generate(ds.begin(), ds.end(),
[°Dist, &rng] { return degDist(rng); });
// First make the sum even
unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
if (sum % 2) {
continue;
// Can we do this: ??
ds.back()++;
}
if (g.createFromDegreeSequence(ds))
break;
// When 10 tries have not worked, output a warning
if (i % 10 == 0) {
std::cerr << "Warning: could not create graph from "
"degree sequence. Trying again...\n";
}
}
#if 0
//
// Test the GCM1 and GCM2 success rate
//
std::vector<int> greedyTriangles1;
std::vector<int> greedyTriangles2;
int successrate1 = 0;
int successrate2 = 0;
for (int i = 0; i < 100; ++i) {
Graph gtemp;
// Take new highest degree every time
if (greedyConfigurationModel(ds, gtemp, rng, false)) {
++successrate1;
greedyTriangles1.push_back(gtemp.countTriangles());
g1 = gtemp;
}
// Finish all pairings of highest degree first
if (greedyConfigurationModel(ds, gtemp, rng, true)) {
++successrate2;
greedyTriangles2.push_back(gtemp.countTriangles());
g2 = gtemp;
}
}
#endif
for (int i = 1; i < 5; ++i) {
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
//int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
//constexpr int measurements = 50;
//constexpr int measureSkip =
// 200; // Take a sample every ... steps
int mixingTime = 0;
constexpr int measurements = 50000;
constexpr int measureSkip = 1;
int movesTotal = 0;
int movesSuccess = 0;
int triangles[measurements];
for (int i = 0; i < mixingTime; ++i) {
++movesTotal;
if (chain.doMove()) {
++movesSuccess;
}
}
std::vector<int> successRates;
successRates.reserve(measurements * measureSkip);
int successrate = 0;
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j) {
++movesTotal;
if (chain.doMove()) {
++movesSuccess;
++successrate;
}
}
triangles[i] = chain.g.countTriangles();
if ((i+1) % 100 == 0) {
successRates.push_back(successrate);
successrate = 0;
}
}
std::cout << '('
<< 100.0f * float(movesSuccess) / float(movesTotal)
<< "% successrate). " << std::flush;
// std::cout << std::endl;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
std::sort(ds.begin(), ds.end());
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << triangles;
outfile << ',' << ds;
#if 0
outfile << ',' << greedyTriangles1;
outfile << ',' << greedyTriangles2;
SwitchChain chain1, chain2;
if (chain1.initialize(g1)) {
movesDone = 0;
SwitchChain& c = chain1;
for (int i = 0; i < mixingTime; ++i) {
if (c.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (c.doMove())
++movesDone;
triangles[i] = c.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
outfile << ',' << triangles;
}
if (chain2.initialize(g2)) {
movesDone = 0;
SwitchChain& c = chain2;
for (int i = 0; i < mixingTime; ++i) {
if (c.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (c.doMove())
++movesDone;
triangles[i] = c.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
outfile << ',' << triangles;
}
#endif
outfile << ',' << successRates;
outfile << '}' << std::flush;
std::cout << std::endl;
}
}
}
}
outfile << '}';
return 0;
}
|