Files
@ 6218fdc51593
Branch filter:
Location: AENC/switchchain/cpp/switchchain.cpp - annotation
6218fdc51593
7.9 KiB
text/x-c++src
Add greedy configuration model as initial graph
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | c039c549918d c039c549918d bfca8e3039c5 7bef7b203f4e a79267af1717 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 c039c549918d 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 0290e63ba024 0290e63ba024 0290e63ba024 446bcd991614 7bef7b203f4e 7bef7b203f4e 446bcd991614 446bcd991614 446bcd991614 c039c549918d a79267af1717 7bef7b203f4e 7bef7b203f4e 7bef7b203f4e a79267af1717 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 446bcd991614 0290e63ba024 0290e63ba024 0290e63ba024 0290e63ba024 efc6996e97a2 446bcd991614 446bcd991614 446bcd991614 efc6996e97a2 0290e63ba024 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 0c08dc618491 446bcd991614 446bcd991614 446bcd991614 446bcd991614 446bcd991614 0290e63ba024 0290e63ba024 446bcd991614 446bcd991614 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 446bcd991614 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 c039c549918d c039c549918d c039c549918d c039c549918d c039c549918d 0290e63ba024 c039c549918d a79267af1717 0f3a4ccb62ea c039c549918d c039c549918d c039c549918d c039c549918d 2c2c8fc81176 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 2c2c8fc81176 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 2c2c8fc81176 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 6218fdc51593 bfca8e3039c5 6218fdc51593 6218fdc51593 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 c039c549918d 0f3a4ccb62ea bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 7bef7b203f4e 0290e63ba024 0290e63ba024 446bcd991614 efc6996e97a2 efc6996e97a2 bfca8e3039c5 2c2c8fc81176 bfca8e3039c5 c039c549918d bfca8e3039c5 446bcd991614 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 bfca8e3039c5 c039c549918d efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 446bcd991614 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 c039c549918d bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 bfca8e3039c5 c039c549918d c039c549918d c039c549918d 446bcd991614 446bcd991614 | #include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}
class SwitchChain {
public:
SwitchChain()
: mt(std::random_device{}()), permutationDistribution(0.5)
// permutationDistribution(0, 2)
{
// random_device uses hardware entropy if available
// std::random_device rd;
// mt.seed(rd());
}
~SwitchChain() {}
bool initialize(const Graph& gstart) {
if (gstart.edgeCount() == 0)
return false;
g = gstart;
edgeDistribution.param(
std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
return true;
}
bool doMove() {
int e1index, e2index;
int timeout = 0;
// Keep regenerating while conflicting edges
do {
e1index = edgeDistribution(mt);
e2index = edgeDistribution(mt);
if (++timeout % 100 == 0) {
std::cerr << "Warning: sampled " << timeout
<< " random edges but they keep conflicting.\n";
}
} while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
// Consider one of the three possible permutations
// 1) e1.u - e1.v and e2.u - e2.v (original)
// 2) e1.u - e2.u and e1.v - e2.v
// 3) e1.u - e2.v and e1.v - e2.u
bool switchType = permutationDistribution(mt);
return g.exchangeEdges(e1index, e2index, switchType);
}
Graph g;
std::mt19937 mt;
std::uniform_int_distribution<> edgeDistribution;
//std::uniform_int_distribution<> permutationDistribution;
std::bernoulli_distribution permutationDistribution;
};
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, auto& rng) {
// Same as Havel-Hakimi but instead of pairing up with the highest ones
// that remain, simply pair up with random ones
unsigned int n = ds.size();
// degree, vertex index
std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
for (unsigned int i = 0; i < n; ++i) {
degrees[i].first = ds[i];
degrees[i].second = i;
}
std::vector<decltype(degrees.begin())> available;
available.reserve(n);
// Clear the graph
g.reset(n);
std::uniform_int_distribution<> distr(1, n - 1);
while (!degrees.empty()) {
// Get the highest degree:
unsigned int dmax = 0;
unsigned int u = 0;
auto maxIter = degrees.begin();
for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
if (iter->first >= dmax) {
dmax = iter->first;
u = iter->second;
maxIter = iter;
}
}
// Take the highest degree out of the vector
degrees.erase(maxIter);
available.clear();
for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
if (iter->first)
available.push_back(iter);
}
if (dmax > available.size())
return false;
std::shuffle(available.begin(), available.end(), rng);
// Now assign randomly to the remaining vertices
// Pick 'cmax' distinct integers between 1 and degrees.size()
for (unsigned int i = 0; i < dmax; ++i) {
if (!g.addEdge({u,available[i]->second})) {
std::cerr << "ERROR. Could not add edge in greedy configuration model.\n";
}
available[i]->first--;
}
}
return true;
}
int main() {
// Generate a random degree sequence
std::mt19937 rng(std::random_device{}());
// Goal:
// Degrees follow a power-law distribution with some parameter tau
// Expect: #tri = const * n^{ something }
// The goal is to find the 'something' by finding the number of triangles
// for different values of n and tau
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f};
Graph g;
std::ofstream outfile("graphdata.m");
outfile << '{';
bool outputComma = false;
for (int numVertices = 200; numVertices <= 1000; numVertices += 100) {
for (float tau : tauValues) {
DegreeSequence ds(numVertices);
powerlaw_distribution degDist(tau, 1, numVertices);
//std::poisson_distribution<> degDist(12);
// For a single n,tau take samples over several instances of
// the degree distribution
for (int degreeSample = 0; degreeSample < 500; ++degreeSample) {
// Generate a graph
// might require multiple tries
for (int i = 1; ; ++i) {
std::generate(ds.begin(), ds.end(),
[°Dist, &rng] { return degDist(rng); });
// First make the sum even
unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
if (sum % 2) {
continue;
// Can we do this: ??
ds.back()++;
}
// Option 1:
if (g.createFromDegreeSequence(ds)) {
// Test option 2:
//int good = 0;
//for (int i = 0; i < 100; ++i) {
// if (greedyConfigurationModel(ds, g, rng))
// ++good;
//}
//std::cerr << "Greedy configuration model success rate: " << good << "%\n";
//g.createFromDegreeSequence(ds);
break;
}
// When 10 tries have not worked, output a warning
if (i % 10 == 0) {
std::cerr << "Warning: could not create graph from "
"degree sequence. Trying again...\n";
}
}
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
constexpr int measurements = 50;
constexpr int measureSkip =
200; // Take a sample every ... steps
int movesDone = 0;
int triangles[measurements];
for (int i = 0; i < mixingTime; ++i) {
if (chain.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove())
++movesDone;
triangles[i] = chain.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%)." << std::endl;
if (outputComma)
outfile << ',';
outputComma = true;
std::sort(ds.begin(), ds.end());
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << triangles << ',' << ds << '}' << std::flush;
}
}
}
outfile << '}';
return 0;
}
|