Files @ fe19e0b0539b
Branch filter:

Location: AENC/switchchain/cpp/switchchain.cpp - annotation

Tom Bannink
Add datafile with readme on the contents
c039c549918d
c039c549918d
bfca8e3039c5
7bef7b203f4e
a79267af1717
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
c039c549918d
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
0290e63ba024
0290e63ba024
0290e63ba024
0290e63ba024
446bcd991614
7bef7b203f4e
7bef7b203f4e
446bcd991614
446bcd991614
446bcd991614
c039c549918d
a79267af1717
7bef7b203f4e
7bef7b203f4e
7bef7b203f4e
a79267af1717
446bcd991614
446bcd991614
446bcd991614
446bcd991614
0290e63ba024
446bcd991614
0290e63ba024
0290e63ba024
0290e63ba024
0290e63ba024
efc6996e97a2
446bcd991614
446bcd991614
446bcd991614
efc6996e97a2
0290e63ba024
446bcd991614
446bcd991614
446bcd991614
446bcd991614
0290e63ba024
0c08dc618491
446bcd991614
446bcd991614
446bcd991614
446bcd991614
446bcd991614
0290e63ba024
0290e63ba024
446bcd991614
446bcd991614
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
9df034849ada
9df034849ada
9df034849ada
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
5da240b7cac5
6218fdc51593
5da240b7cac5
5da240b7cac5
5da240b7cac5
6218fdc51593
5da240b7cac5
6218fdc51593
6218fdc51593
6218fdc51593
5da240b7cac5
6218fdc51593
6218fdc51593
6218fdc51593
5da240b7cac5
6218fdc51593
6218fdc51593
9df034849ada
9df034849ada
9df034849ada
9df034849ada
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
5da240b7cac5
5da240b7cac5
9df034849ada
9df034849ada
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
9df034849ada
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
9df034849ada
5da240b7cac5
5da240b7cac5
5da240b7cac5
6218fdc51593
5da240b7cac5
5da240b7cac5
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
446bcd991614
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
c039c549918d
c039c549918d
c039c549918d
c039c549918d
0290e63ba024
c039c549918d
a79267af1717
9df034849ada
5da240b7cac5
0f3a4ccb62ea
c039c549918d
c039c549918d
c039c549918d
c039c549918d
2c2c8fc81176
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
2c2c8fc81176
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
9df034849ada
9df034849ada
9df034849ada
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
6218fdc51593
5da240b7cac5
bfca8e3039c5
6218fdc51593
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
c039c549918d
0f3a4ccb62ea
5da240b7cac5
9df034849ada
5da240b7cac5
9df034849ada
9df034849ada
9df034849ada
9df034849ada
5da240b7cac5
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
5da240b7cac5
5da240b7cac5
5da240b7cac5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
7bef7b203f4e
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
0290e63ba024
0290e63ba024
446bcd991614
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
5da240b7cac5
9df034849ada
5da240b7cac5
5da240b7cac5
5da240b7cac5
bfca8e3039c5
c039c549918d
bfca8e3039c5
446bcd991614
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
bfca8e3039c5
efc6996e97a2
efc6996e97a2
efc6996e97a2
efc6996e97a2
efc6996e97a2
bfca8e3039c5
c039c549918d
efc6996e97a2
efc6996e97a2
efc6996e97a2
efc6996e97a2
9df034849ada
9df034849ada
446bcd991614
bfca8e3039c5
59e3e241c8ea
bfca8e3039c5
c039c549918d
bfca8e3039c5
bfca8e3039c5
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
9df034849ada
bfca8e3039c5
c039c549918d
c039c549918d
c039c549918d
446bcd991614
446bcd991614
#include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}

class SwitchChain {
  public:
    SwitchChain()
        : mt(std::random_device{}()), permutationDistribution(0.5)
    // permutationDistribution(0, 2)
    {
        // random_device uses hardware entropy if available
        // std::random_device rd;
        // mt.seed(rd());
    }
    ~SwitchChain() {}

    bool initialize(const Graph& gstart) {
        if (gstart.edgeCount() == 0)
            return false;
        g = gstart;
        edgeDistribution.param(
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
        return true;
    }

    bool doMove() {
        int e1index, e2index;
        int timeout = 0;
        // Keep regenerating while conflicting edges
        do {
            e1index = edgeDistribution(mt);
            e2index = edgeDistribution(mt);
            if (++timeout % 100 == 0) {
                std::cerr << "Warning: sampled " << timeout
                          << " random edges but they keep conflicting.\n";
            }
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));

        // Consider one of the three possible permutations
        // 1) e1.u - e1.v and e2.u - e2.v (original)
        // 2) e1.u - e2.u and e1.v - e2.v
        // 3) e1.u - e2.v and e1.v - e2.u
        bool switchType = permutationDistribution(mt);
        return g.exchangeEdges(e1index, e2index, switchType);
    }

    Graph g;
    std::mt19937 mt;
    std::uniform_int_distribution<> edgeDistribution;
    //std::uniform_int_distribution<> permutationDistribution;
    std::bernoulli_distribution permutationDistribution;
};

//
// Assumes degree sequence does NOT contain any zeroes!
//
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, auto& rng, bool method2) {
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
    // that remain, simply pair up with random ones
    unsigned int n = ds.size();

    // degree, vertex index
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
    for (unsigned int i = 0; i < n; ++i) {
        degrees[i].first = ds[i];
        degrees[i].second = i;
    }

    std::vector<decltype(degrees.begin())> available;
    available.reserve(n);

    // Clear the graph
    g.reset(n);

    while (!degrees.empty()) {
        std::shuffle(degrees.begin(), degrees.end(), rng);
        // Get the highest degree:
        // If there are multiple highest ones, we pick a random one,
        // ensured by the shuffle.
        // The shuffle is needed anyway for the remaining part
        unsigned int dmax = 0;
        auto uIter = degrees.begin();
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
            if (iter->first >= dmax) {
                dmax = iter->first;
                uIter = iter;
            }
        }

        if (dmax > degrees.size() - 1)
            return false;

        if (dmax == 0) {
            std::cerr << "ERROR 1 in GCM.\n";
        }

        unsigned int u = uIter->second;

        if (method2) {
            // Take the highest degree out of the vector
            degrees.erase(uIter);

            // Now assign randomly to the remaining vertices
            // Since its shuffled, we can pick the first 'dmax' ones
            auto vIter = degrees.begin();
            while (dmax--) {
                if (vIter->first == 0)
                    std::cerr << "ERROR in GCM2.\n";
                if (!g.addEdge({u, vIter->second}))
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
                vIter->first--;
                if (vIter->first == 0)
                    vIter = degrees.erase(vIter);
                else
                    vIter++;
            }
        } else {
            // Pair with a random vertex that is not u itself and to which
            // u has not paired yet!
            available.clear();
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
                if (iter->second != u && !g.hasEdge({u, iter->second}))
                    available.push_back(iter);
            }
            if (available.empty())
                return false;
            std::uniform_int_distribution<> distr(0, available.size() - 1);
            auto vIter = available[distr(rng)];
            // pair u to v
            if (vIter->first == 0)
                std::cerr << "ERROR 2 in GCM1.\n";
            if (!g.addEdge({u, vIter->second}))
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
            // Purge anything with degree zero
            // Be careful with invalidating the other iterator!
            // Degree of u is always greater or equal to the degree of v
            if (dmax == 1) {
                // Remove both
                // Erasure invalidates all iterators AFTER the erased one
                if (vIter > uIter) {
                    degrees.erase(vIter);
                    degrees.erase(uIter);
                } else {
                    degrees.erase(uIter);
                    degrees.erase(vIter);
                }
            } else {
                // Remove only v if it reaches zero
                uIter->first--;
                vIter->first--;
                if (vIter->first == 0)
                    degrees.erase(vIter);
            }
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
            //                             [](auto x) { return x.first == 0; }));
        }
    }
    return true;
}

int main() {
    // Generate a random degree sequence
    std::mt19937 rng(std::random_device{}());

    // Goal:
    // Degrees follow a power-law distribution with some parameter tau
    // Expect:  #tri = const * n^{ something }
    // The goal is to find the 'something' by finding the number of triangles
    // for different values of n and tau
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f};

    Graph g;
    Graph g1;
    Graph g2;

    std::ofstream outfile("graphdata.m");
    outfile << '{';
    bool outputComma = false;

    for (int numVertices = 200; numVertices <= 1000; numVertices += 100) {
        for (float tau : tauValues) {

            DegreeSequence ds(numVertices);
            powerlaw_distribution degDist(tau, 1, numVertices);
            //std::poisson_distribution<> degDist(12);

            // For a single n,tau take samples over several instances of
            // the degree distribution.
            // 500 samples seems to give reasonable results
            for (int degreeSample = 0; degreeSample < 200; ++degreeSample) {
                // Generate a graph
                // might require multiple tries
                for (int i = 1; ; ++i) {
                    std::generate(ds.begin(), ds.end(),
                                  [&degDist, &rng] { return degDist(rng); });
                    // First make the sum even
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
                    if (sum % 2) {
                        continue;
                        // Can we do this: ??
                        ds.back()++;
                    }

                    if (g.createFromDegreeSequence(ds))
                        break;

                    // When 10 tries have not worked, output a warning
                    if (i % 10 == 0) {
                        std::cerr << "Warning: could not create graph from "
                                     "degree sequence. Trying again...\n";
                    }
                }

                //
                // Test the GCM1 and GCM2 success rate
                //
                std::vector<int> greedyTriangles1;
                std::vector<int> greedyTriangles2;
                int successrate1 = 0;
                int successrate2 = 0;
                for (int i = 0; i < 100; ++i) {
                    Graph gtemp;
                    if (greedyConfigurationModel(ds, gtemp, rng, false)) {
                        ++successrate1;
                        greedyTriangles1.push_back(gtemp.countTriangles());
                        g1 = gtemp;
                    }
                    if (greedyConfigurationModel(ds, gtemp, rng, true)) {
                        ++successrate2;
                        greedyTriangles2.push_back(gtemp.countTriangles());
                        g2 = gtemp;
                    }
                }

                SwitchChain chain;
                if (!chain.initialize(g)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    return 1;
                }

                SwitchChain chain1, chain2;
                bool do1 = true, do2 = true;
                if (!chain1.initialize(g1)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    do1 = false;
                }
                if (!chain2.initialize(g2)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    do2 = false;
                }

                std::cout << "Running n = " << numVertices << ", tau = " << tau
                          << ". \t" << std::flush;

                //int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
                //constexpr int measurements = 50;
                //constexpr int measureSkip =
                //    200; // Take a sample every ... steps
                int mixingTime = 0;
                constexpr int measurements = 5000;
                constexpr int measureSkip = 1;


                int movesDone = 0;

                int triangles[measurements];

                for (int i = 0; i < mixingTime; ++i) {
                    if (chain.doMove())
                        ++movesDone;
                }
                for (int i = 0; i < measurements; ++i) {
                    for (int j = 0; j < measureSkip; ++j)
                        if (chain.doMove())
                            ++movesDone;
                    triangles[i] = chain.g.countTriangles();
                }

                std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
                          << " moves succeeded ("
                          << 100.0f * float(movesDone) /
                                 float(mixingTime + measurements * measureSkip)
                          << "%).";
                //std::cout << std::endl;

                if (outputComma)
                    outfile << ',' << '\n';
                outputComma = true;

                std::sort(ds.begin(), ds.end());
                outfile << '{' << '{' << numVertices << ',' << tau << '}';
                outfile << ',' << triangles;
                outfile << ',' << ds;
                outfile << ',' << greedyTriangles1;
                outfile << ',' << greedyTriangles2;

                if (do1) {
                    movesDone = 0;
                    SwitchChain& c = chain1;
                    for (int i = 0; i < mixingTime; ++i) {
                        if (c.doMove())
                            ++movesDone;
                    }
                    for (int i = 0; i < measurements; ++i) {
                        for (int j = 0; j < measureSkip; ++j)
                            if (c.doMove())
                                ++movesDone;
                        triangles[i] = c.g.countTriangles();
                    }

                    std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
                        << " moves succeeded ("
                        << 100.0f * float(movesDone) /
                        float(mixingTime + measurements * measureSkip)
                        << "%).";

                    outfile << ',' << triangles;
                }
                if (do2) {
                    movesDone = 0;
                    SwitchChain& c = chain2;
                    for (int i = 0; i < mixingTime; ++i) {
                        if (c.doMove())
                            ++movesDone;
                    }
                    for (int i = 0; i < measurements; ++i) {
                        for (int j = 0; j < measureSkip; ++j)
                            if (c.doMove())
                                ++movesDone;
                        triangles[i] = c.g.countTriangles();
                    }

                    std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
                        << " moves succeeded ("
                        << 100.0f * float(movesDone) /
                        float(mixingTime + measurements * measureSkip)
                        << "%).";

                    outfile << ',' << triangles;
                }

                outfile << '}' << std::flush;

                std::cout << std::endl;
            }
        }
    }
    outfile << '}';
    return 0;
}