Files
@ 096e40410087
Branch filter:
Location: AENC/switchchain/cpp/switchchain_ccm_initialtris.cpp
096e40410087
5.2 KiB
text/x-c++src
Add ccm time evol plots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | #include "exports.hpp"
#include "graph.hpp"
#include "graph_ccm.hpp"
#include "graph_powerlaw.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
int main(int argc, char* argv[]) {
// Simulation parameters
const int numVerticesMin = 200;
const int numVerticesMax = 2000;
const int numVerticesStep = 400;
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
//float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f};
const int totalDegreeSamples = 200;
auto getMixingTime = [](int n, float tau) {
return int(50.0f * (50.0f - 30.0f * (tau - 2.0f)) * n);
};
auto getMeasurements = [](int n, float tau) {
(void)n;
(void)tau;
return 100;
};
auto getMeasureSkip = [](int n, float tau) {
(void)tau;
return 10 * n; // Take a sample every ... steps
};
// Output file
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata_ccm_initialtris.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
// Output Mathematica-style comment to indicate file contents
outfile << "(*\n";
outfile << "n from " << numVerticesMin << " to " << numVerticesMax
<< " step " << numVerticesStep << std::endl;
outfile << "tauValues: " << tauValues << std::endl;
outfile << "degreeSamples: " << totalDegreeSamples << std::endl;
outfile << "mixingTime: 50 * (50 - 30 (tau - 2)) n\n";
outfile << "measurements: 100\n";
outfile << "measureSkip: 10 n\n";
outfile << "data:\n";
outfile << "1: {n,tau}\n";
outfile << "2: avgTriangles\n";
outfile << "3: {ccmTris1, ccmsrate1} \n";
outfile << "4: {ccmTris2, ccmsrate2} \n";
outfile << "*)" << std::endl;
// Mathematica does not accept normal scientific notation
outfile << std::fixed;
outfile << '{';
bool outputComma = false;
std::mt19937 rng(std::random_device{}());
Graph g;
for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
numVertices += numVerticesStep) {
for (float tau : tauValues) {
// For a single n,tau take samples over several instances of
// the degree distribution.
for (int degreeSample = 0; degreeSample < totalDegreeSamples;
++degreeSample) {
DegreeSequence ds;
generatePowerlawGraph(numVertices, tau, g, ds, rng);
std::cout << "Running (n,tau) = (" << numVertices << ',' << tau
<< "). " << std::flush;
//
// Test the GCM1 and GCM2 success rate
//
long long gcmTris1 = 0;
long long gcmTris2 = 0;
int successrate1 = 0;
int successrate2 = 0;
for (int i = 0; i < 100; ++i) {
Graph gtemp;
// Take new highest degree every time
if (constrainedConfigurationModel(ds, gtemp, rng, false)) {
++successrate1;
gcmTris1 += gtemp.countTriangles();
}
// Finish all pairings of highest degree first
if (constrainedConfigurationModel(ds, gtemp, rng, true)) {
++successrate2;
gcmTris2 += gtemp.countTriangles();
}
}
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
long long trianglesTotal = 0;
std::cout << " Finished CCM generation." << std::flush;
int mixingTime = getMixingTime(numVertices, tau);
for (int i = 0; i < mixingTime; ++i) {
chain.doMove();
}
chain.g.getTrackedTriangles() = chain.g.countTriangles();
int measurements = getMeasurements(numVertices, tau);
int measureSkip = getMeasureSkip(numVertices, tau);
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
chain.doMove(true);
trianglesTotal += chain.g.getTrackedTriangles();
}
std::cout << " Finished mixing and measurements." << std::flush;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
float avgTriangles =
float(trianglesTotal) / float(measurements);
outfile << '{';
outfile << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles;
outfile << ',' << '{' << gcmTris1 << ',' << successrate1 << '}';
outfile << ',' << '{' << gcmTris2 << ',' << successrate2 << '}';
outfile << '}' << std::flush;
std::cout << std::endl;
}
}
}
outfile << '}';
return 0;
}
|