Files
@ 0f3a4ccb62ea
Branch filter:
Location: AENC/switchchain/cpp/graph.hpp
0f3a4ccb62ea
5.3 KiB
text/x-c++hdr
Add generation of random degree distribution and split cpp file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | #pragma once
#include <numeric>
#include <vector>
class Edge {
public:
unsigned int u, v;
bool operator==(const Edge &e) const { return u == e.u && v == e.v; }
};
class DiDegree {
public:
unsigned int in;
unsigned int out;
};
typedef std::vector<unsigned int> DegreeSequence;
typedef std::vector<DiDegree> DiDegreeSequence;
class Graph {
public:
Graph() {}
Graph(unsigned int n) { adj.resize(n); }
~Graph() {}
void resize(unsigned int n) {
if (n < adj.size()) {
edges.clear();
}
adj.resize(n);
}
unsigned int edgeCount() const { return edges.size(); }
Edge &getEdge(unsigned int i) { return edges[i]; }
const Edge &getEdge(unsigned int i) const { return edges[i]; }
bool createFromDegreeSequence(const DegreeSequence &d) {
// Havel-Hakimi algorithm
unsigned int n = d.size();
// degree, vertex index
std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
for (unsigned int i = 0; i < n; ++i) {
degrees[i].first = d[i];
degrees[i].second = i;
}
edges.clear();
adj.resize(n);
while (!degrees.empty()) {
std::sort(degrees.begin(), degrees.end());
// Highest degree is at back of the vector
// Take it out
unsigned int degree = degrees.back().first;
unsigned int u = degrees.back().second;
degrees.pop_back();
if (degree > degrees.size()) {
edges.clear();
adj.clear();
return false;
}
// Now loop over the last 'degree' entries of degrees
auto rit = degrees.rbegin();
for (unsigned int i = 0; i < degree; ++i) {
if (rit->first == 0 || !addEdge({u, rit->second})) {
edges.clear();
adj.clear();
return false;
}
rit->first--;
++rit;
}
}
return true;
}
DegreeSequence getDegreeSequence() const {
DegreeSequence d(adj.size());
std::transform(adj.begin(), adj.end(), d.begin(),
[](const auto &u) { return u.size(); });
return d;
}
// Assumes valid vertex indices
bool hasEdge(const Edge &e) const {
for (unsigned int v : adj[e.u]) {
if (v == e.v)
return true;
}
return false;
}
bool addEdge(const Edge &e) {
if (e.u >= adj.size() || e.v >= adj.size())
return false;
if (hasEdge(e))
return false;
edges.push_back(e);
adj[e.u].push_back(e.v);
adj[e.v].push_back(e.u);
return true;
}
// There are two possible edge exchanges
// switchType indicates which one is desired
// Returns false if the switch is not possible
bool exchangeEdges(const Edge &e1, const Edge &e2, bool switchType) {
// The new edges configuration is one of these two
// A) e1.u - e2.u and e1.v - e2.v
// B) e1.u - e2.v and e1.v - e2.u
// First check if the move is possible
if (switchType) {
if (hasEdge({e1.u, e2.u}) || hasEdge({e1.v, e2.v}))
return false; // conflicting edges
} else {
if (hasEdge({e1.u, e2.v}) || hasEdge({e1.v, e2.u}))
return false; // conflicting edges
}
// Find the edges in the adjacency lists
unsigned int i1, j1, i2, j2;
for (i1 = 0; i1 < adj[e1.u].size(); ++i1) {
if (adj[e1.u][i1] == e1.v)
break;
}
for (j1 = 0; j1 < adj[e1.v].size(); ++j1) {
if (adj[e1.v][j1] == e1.u)
break;
}
for (i2 = 0; i2 < adj[e2.u].size(); ++i2) {
if (adj[e2.u][i2] == e2.v)
break;
}
for (j2 = 0; j2 < adj[e2.v].size(); ++j2) {
if (adj[e2.v][j2] == e2.u)
break;
}
// Remove the old edges
bool removedOne = false;
for (auto iter = edges.begin(); iter != edges.end();) {
if (*iter == e1) {
iter = edges.erase(iter);
if (removedOne)
break;
removedOne = true;
} else if (*iter == e2) {
iter = edges.erase(iter);
if (removedOne)
break;
removedOne = true;
} else {
++iter;
}
}
// Add the new edges
if (switchType) {
adj[e1.u][i1] = e2.u;
adj[e1.v][j1] = e2.v;
adj[e2.u][i2] = e1.u;
adj[e2.v][j2] = e1.v;
edges.push_back({e1.u, e2.u});
edges.push_back({e1.v, e2.v});
} else {
adj[e1.u][i1] = e2.v;
adj[e1.v][j1] = e2.u;
adj[e2.u][i2] = e1.v;
adj[e2.v][j2] = e1.u;
edges.push_back({e1.u, e2.v});
edges.push_back({e1.v, e2.u});
}
return true;
}
private:
// Graph is saved in two formats for speed
// The two should be kept consistent at all times
std::vector<std::vector<unsigned int>> adj;
std::vector<Edge> edges;
};
|