Files
@ 148e381c9fd3
Branch filter:
Location: AENC/switchchain/cpp/switchchain.cpp
148e381c9fd3
7.7 KiB
text/x-c++src
Run exponent simulation on smaller n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | #include "switchchain.hpp"
#include "exports.hpp"
#include "graph.hpp"
#include "graph_ccm.hpp"
#include "graph_powerlaw.hpp"
#include "graph_spectrum.hpp"
#include <algorithm>
#include <array>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
void getTriangleDegrees(const Graph& g) {
std::vector<std::array<std::size_t,3>> trids;
const auto& adj = g.getAdj();
int triangles = 0;
for (auto& v : adj) {
for (unsigned int i = 0; i < v.size(); ++i) {
for (unsigned int j = i + 1; j < v.size(); ++j) {
if (g.hasEdge({v[i], v[j]})) {
++triangles;
std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
adj[v[j]].size()}};
std::sort(ds.begin(), ds.end());
trids.push_back(ds);
}
}
}
}
assert(triangles % 3 == 0);
return;
}
int main(int argc, char* argv[]) {
// Generate a random degree sequence
std::mt19937 rng(std::random_device{}());
// Goal:
// Degrees follow a power-law distribution with some parameter tau
// Expect: #tri = const * n^{ something }
// The goal is to find the 'something' by finding the number of triangles
// for different values of n and tau
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
Graph g;
Graph g1;
Graph g2;
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
outfile << '{';
bool outputComma = false;
for (int numVertices = 500; numVertices <= 500; numVertices += 1000) {
for (float tau : tauValues) {
// For a single n,tau take samples over several instances of
// the degree distribution.
for (int degreeSample = 0; degreeSample < 5; ++degreeSample) {
DegreeSequence ds;
generatePowerlawGraph(numVertices, tau, g, ds, rng);
#if 0
//
// Test the GCM1 and GCM2 success rate
//
std::vector<int> greedyTriangles1;
std::vector<int> greedyTriangles2;
int successrate1 = 0;
int successrate2 = 0;
for (int i = 0; i < 100; ++i) {
Graph gtemp;
// Take new highest degree every time
if (greedyConfigurationModel(ds, gtemp, rng, false)) {
++successrate1;
greedyTriangles1.push_back(gtemp.countTriangles());
g1 = gtemp;
}
// Finish all pairings of highest degree first
if (greedyConfigurationModel(ds, gtemp, rng, true)) {
++successrate2;
greedyTriangles2.push_back(gtemp.countTriangles());
g2 = gtemp;
}
}
#endif
for (int i = 1; i < 5; ++i) {
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
//int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
//constexpr int measurements = 50;
//constexpr int measureSkip =
// 200; // Take a sample every ... steps
int mixingTime = 0;
constexpr int measurements = 50000;
constexpr int measureSkip = 1;
int movesTotal = 0;
int movesSuccess = 0;
int triangles[measurements];
for (int i = 0; i < mixingTime; ++i) {
++movesTotal;
if (chain.doMove()) {
++movesSuccess;
}
}
std::vector<int> successRates;
successRates.reserve(measurements * measureSkip);
int successrate = 0;
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j) {
++movesTotal;
if (chain.doMove()) {
++movesSuccess;
++successrate;
}
}
triangles[i] = chain.g.countTriangles();
if ((i+1) % 100 == 0) {
successRates.push_back(successrate);
successrate = 0;
}
}
std::cout << '('
<< 100.0f * float(movesSuccess) / float(movesTotal)
<< "% successrate). " << std::flush;
// std::cout << std::endl;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
std::sort(ds.begin(), ds.end());
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << triangles;
outfile << ',' << ds;
#if 0
outfile << ',' << greedyTriangles1;
outfile << ',' << greedyTriangles2;
SwitchChain chain1, chain2;
if (chain1.initialize(g1)) {
movesDone = 0;
SwitchChain& c = chain1;
for (int i = 0; i < mixingTime; ++i) {
if (c.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (c.doMove())
++movesDone;
triangles[i] = c.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
outfile << ',' << triangles;
}
if (chain2.initialize(g2)) {
movesDone = 0;
SwitchChain& c = chain2;
for (int i = 0; i < mixingTime; ++i) {
if (c.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (c.doMove())
++movesDone;
triangles[i] = c.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
outfile << ',' << triangles;
}
#endif
outfile << ',' << successRates;
outfile << '}' << std::flush;
std::cout << std::endl;
}
}
}
}
outfile << '}';
return 0;
}
|