Files @ 1b3f095f886f
Branch filter:

Location: AENC/switchchain/cpp/switchchain_mixingtime.cpp

Tom Bannink
Add computation of delta-triangles to switchchain
#include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <array>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

int main(int argc, char* argv[]) {
    // Simulation parameters
    const int numVerticesMin = 1000;
    const int numVerticesMax = 4000;
    const int numVerticesStep = 500;

    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};

    const int totalDegreeSamples = 200;

    auto getMixingTime = [](int n, float tau) {
        (void)n;
        (void)tau;
        return 0;
        //return int(50.0f * (50.0f - 30.0f * (tau - 2.0f)) * n);
    };
    constexpr int measurements = 100000;
    constexpr int measureSkip = 1; // Take a sample every ... steps

    // Output file
    std::ofstream outfile;
    if (argc >= 2)
        outfile.open(argv[1]);
    else
        outfile.open("graphdata_etmt.m");
    if (!outfile.is_open()) {
        std::cout << "ERROR: Could not open output file.\n";
        return 1;
    }

    // Output Mathematica-style comment to indicate file contents
    outfile << "(*\n";
    outfile << "n from " << numVerticesMin << " to " << numVerticesMax
            << " step " << numVerticesStep << std::endl;
    outfile << "tauValues: " << tauValues << std::endl;
    outfile << "degreeSamples: " << totalDegreeSamples << std::endl;
    outfile << "mixingTime: 50 * (50 - 30 (tau - 2)) n\n";
    outfile << "data:\n";
    outfile << "1: {n,tau}\n";
    outfile << "2: avgTriangles\n";
    outfile << "3: edges\n";
    outfile << "4: etmt\n";
    outfile << "*)" << std::endl;

    // Mathematica does not accept normal scientific notation
    outfile << std::fixed;
    outfile << '{';
    bool outputComma = false;

    // Generate a random degree sequence
    std::mt19937 rng(std::random_device{}());
    Graph g;
    Graph g1;
    Graph g2;
    for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
         numVertices += numVerticesStep) {
        for (float tau : tauValues) {
            // For a single n,tau take samples over several instances of
            // the degree distribution.
            for (int degreeSample = 0; degreeSample < totalDegreeSamples;
                 ++degreeSample) {
                DegreeSequence ds;
                generatePowerlawGraph(numVertices, tau, g, ds, rng);

                // Multiple runs from the same degree sequence
                for (int i = 0; i < 5; ++i) {

                SwitchChain chain;
                if (!chain.initialize(g, true)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    return 1;
                }

                std::cout << "Running (n,tau) = (" << numVertices << ','
                          << tau << "). " << std::flush;

                int movesTotal = 0;
                int movesSuccess = 0;

                int triangles[measurements];

                // Mix
                int mixingTime = getMixingTime(numVertices, tau);
                for (int i = 0; i < mixingTime; ++i) {
                    chain.doMove();
                }

                // Measure
                for (int i = 0; i < measurements; ++i) {
                    for (int j = 0; j < measureSkip; ++j) {
                        ++movesTotal;
                        if (chain.doMove(true)) {
                            ++movesSuccess;
                        }
                    }
                    triangles[i] = chain.g.getTrackedTriangles();
                }

                std::cout << "Measuring done. " << std::flush;

                // Take the average over the last 20%
                auto trianglesTotal = 0uL;
                auto count = 0u;
                for (int i = measurements - (measurements / 5); i < measurements; ++i) {
                    trianglesTotal += triangles[i];
                    count++;
                }
                double trianglesAvg = double(trianglesTotal)/double(count);

                // Find the ETMT
                int ETMT = 0;
                for (int i = 0; i < measurements; ++i) {
                    if (triangles[i] < trianglesAvg) {
                        ETMT = i;
                        break;
                    }
                }

                if (outputComma)
                    outfile << ',' << '\n';
                outputComma = true;

                outfile << '{' << '{' << numVertices << ',' << tau << '}';
                outfile << ',' << trianglesAvg;
                outfile << ',' << g.edgeCount();
                outfile << ',' << ETMT;
                outfile << '}' << std::flush;

                std::cout << "Output done. " << std::endl;
                }
            }
        }
    }
    outfile << '}';
    return 0;
}