Files @ 2ba81931a724
Branch filter:

Location: AENC/switchchain/cpp/switchchain_canonical_mixingtime.cpp

Tom Bannink
Add canonical timeevol file
#include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "graph_spectrum.hpp"
#include "histogram.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

int main(int argc, char* argv[]) {
    // Simulation parameters
    const int numVerticesMin = 10000;
    const int numVerticesMax = 20000;
    const int numVerticesStep = 10000;

    float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f};

    const int sampleRuns = 100000;

    auto getMixingTime = [](int n, float tau) {
        return int(50.0f * (50.0f - 5.0f * (tau - 2.0f)) * n);
    };
    auto getMeasurements = [](int n, float tau) {
        (void)n;
        (void)tau;
        return 100000;
    };
    auto getMeasureSkip = [](int n, float tau) {
        (void)tau;
        return 30 * n; // Take a sample every ... steps
    };

    // Output file
    std::ofstream outfile;
    if (argc >= 2)
        outfile.open(argv[1]);
    else
        outfile.open("graphdata_canonical_mixingtime.m");
    if (!outfile.is_open()) {
        std::cout << "ERROR: Could not open output file.\n";
        return 1;
    }

    // Output Mathematica-style comment to indicate file contents
    outfile << "(*\n";
    outfile << "n from " << numVerticesMin << " to " << numVerticesMax
            << " step " << numVerticesStep << std::endl;
    outfile << "tauValues: " << tauValues << std::endl;
    outfile << "Canonical degree sequence.\n";
    outfile << "sample runs: " << sampleRuns << std::endl;
    outfile << "time stamps: {0.2 n, 0.4 n, 0.6 n, ... , 40.0 n}\n";
    outfile << "For uniform samples:\n";
    outfile << "mixingTime: 50 * (50 - 5 (tau - 2)) n\n";
    outfile << "measurements: 100000\n";
    outfile << "measureSkip: 30 n\n";
    outfile << "data:\n";
    outfile << "1: {n,tau}\n";
    outfile << "2: { {timestamp 1, {histogram}}, {timestamp 2, {histogram}} }\n";
    outfile << "3: {uniform histogram}\n";
    outfile << "*)" << std::endl;

    // Mathematica does not accept normal scientific notation
    outfile << std::fixed;
    outfile << '{' << '\n';
    bool outputComma = false;

    SwitchChain chain;
    Graph g;
    for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
         numVertices += numVerticesStep) {
        for (float tau : tauValues) {
            DegreeSequence ds;
            generateCanonicalPowerlawGraph(numVertices, tau, g, ds);

            std::cout << "Running (n,tau) = (" << numVertices << ',' << tau
                      << "). " << std::flush;
            if (outputComma)
                outfile << ',' << '\n';
            outputComma = true;
            outfile << '{' << '{' << numVertices << ',' << tau << '}';

#if 0
            std::vector<int> samples;
            outfile << ',' << '{';
            for (int maxTime = numVertices; maxTime <= 20 * numVertices;
                 maxTime += numVertices) {
                samples.clear();
                for (int sample = 0; sample < 1000; ++sample) {
                    chain.initialize(g, true);
                    for (int i = 0; i < maxTime; ++i)
                        chain.doMove(true);
                    samples.push_back(chain.g.getTrackedTriangles());
                }
                if (maxTime != numVertices)
                    outfile << ',';
                outfile << '{' << maxTime << ',' << samples << '}';
                std::cout << "t=" << maxTime << ' ' << std::flush;
            }
            outfile << '}';
#else
            std::vector<std::pair<int, Histogram>> samples;
            for (int i = 2; i <= 400; i += 2) {
                samples.push_back({(i * numVertices / 10), Histogram()});
            }

            for (int sample = 0; sample < 100000; ++sample) {
                chain.initialize(g, true);
                int curTime = 0;
                for (auto &piv : samples) {
                    for (; curTime < piv.first; ++curTime)
                        chain.doMove(true);
                    piv.second.add(chain.g.getTrackedTriangles());
                }
            }
            outfile << ',' << samples;
#endif

            std::cout << "\nTaking uniform samples." << std::flush;
            // Uniform samples
            chain.initialize(g);
            int mixingTime = getMixingTime(numVertices, tau);
            for (int i = 0; i < mixingTime; ++i) {
                chain.doMove();
            }
            chain.g.getTrackedTriangles() = chain.g.countTriangles();
            int measurements = getMeasurements(numVertices, tau);
            int measureSkip = getMeasureSkip(numVertices, tau);
            Histogram usamples;
            for (int i = 0; i < measurements; ++i) {
                for (int j = 0; j < measureSkip; ++j)
                    chain.doMove(true);
                usamples.add(chain.g.getTrackedTriangles());
            }
            outfile << ',' << usamples;
            outfile << '}' << std::flush;
            std::cout << std::endl;
        }
    }
    outfile << '\n' << '}';
    return 0;
}