Files
@ 2ba81931a724
Branch filter:
Location: AENC/switchchain/cpp/switchchain_canonical_mixingtime.cpp
2ba81931a724
5.0 KiB
text/x-c++src
Add canonical timeevol file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | #include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "graph_spectrum.hpp"
#include "histogram.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
int main(int argc, char* argv[]) {
// Simulation parameters
const int numVerticesMin = 10000;
const int numVerticesMax = 20000;
const int numVerticesStep = 10000;
float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f};
const int sampleRuns = 100000;
auto getMixingTime = [](int n, float tau) {
return int(50.0f * (50.0f - 5.0f * (tau - 2.0f)) * n);
};
auto getMeasurements = [](int n, float tau) {
(void)n;
(void)tau;
return 100000;
};
auto getMeasureSkip = [](int n, float tau) {
(void)tau;
return 30 * n; // Take a sample every ... steps
};
// Output file
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata_canonical_mixingtime.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
// Output Mathematica-style comment to indicate file contents
outfile << "(*\n";
outfile << "n from " << numVerticesMin << " to " << numVerticesMax
<< " step " << numVerticesStep << std::endl;
outfile << "tauValues: " << tauValues << std::endl;
outfile << "Canonical degree sequence.\n";
outfile << "sample runs: " << sampleRuns << std::endl;
outfile << "time stamps: {0.2 n, 0.4 n, 0.6 n, ... , 40.0 n}\n";
outfile << "For uniform samples:\n";
outfile << "mixingTime: 50 * (50 - 5 (tau - 2)) n\n";
outfile << "measurements: 100000\n";
outfile << "measureSkip: 30 n\n";
outfile << "data:\n";
outfile << "1: {n,tau}\n";
outfile << "2: { {timestamp 1, {histogram}}, {timestamp 2, {histogram}} }\n";
outfile << "3: {uniform histogram}\n";
outfile << "*)" << std::endl;
// Mathematica does not accept normal scientific notation
outfile << std::fixed;
outfile << '{' << '\n';
bool outputComma = false;
SwitchChain chain;
Graph g;
for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
numVertices += numVerticesStep) {
for (float tau : tauValues) {
DegreeSequence ds;
generateCanonicalPowerlawGraph(numVertices, tau, g, ds);
std::cout << "Running (n,tau) = (" << numVertices << ',' << tau
<< "). " << std::flush;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
outfile << '{' << '{' << numVertices << ',' << tau << '}';
#if 0
std::vector<int> samples;
outfile << ',' << '{';
for (int maxTime = numVertices; maxTime <= 20 * numVertices;
maxTime += numVertices) {
samples.clear();
for (int sample = 0; sample < 1000; ++sample) {
chain.initialize(g, true);
for (int i = 0; i < maxTime; ++i)
chain.doMove(true);
samples.push_back(chain.g.getTrackedTriangles());
}
if (maxTime != numVertices)
outfile << ',';
outfile << '{' << maxTime << ',' << samples << '}';
std::cout << "t=" << maxTime << ' ' << std::flush;
}
outfile << '}';
#else
std::vector<std::pair<int, Histogram>> samples;
for (int i = 2; i <= 400; i += 2) {
samples.push_back({(i * numVertices / 10), Histogram()});
}
for (int sample = 0; sample < 100000; ++sample) {
chain.initialize(g, true);
int curTime = 0;
for (auto &piv : samples) {
for (; curTime < piv.first; ++curTime)
chain.doMove(true);
piv.second.add(chain.g.getTrackedTriangles());
}
}
outfile << ',' << samples;
#endif
std::cout << "\nTaking uniform samples." << std::flush;
// Uniform samples
chain.initialize(g);
int mixingTime = getMixingTime(numVertices, tau);
for (int i = 0; i < mixingTime; ++i) {
chain.doMove();
}
chain.g.getTrackedTriangles() = chain.g.countTriangles();
int measurements = getMeasurements(numVertices, tau);
int measureSkip = getMeasureSkip(numVertices, tau);
Histogram usamples;
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
chain.doMove(true);
usamples.add(chain.g.getTrackedTriangles());
}
outfile << ',' << usamples;
outfile << '}' << std::flush;
std::cout << std::endl;
}
}
outfile << '\n' << '}';
return 0;
}
|