Files
@ 32a7f1c13790
Branch filter:
Location: AENC/switchchain/cpp/switchchain_canonical_properties.cpp
32a7f1c13790
6.0 KiB
text/x-c++src
Add cannonical powerlaw ds
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | #include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "graph_spectrum.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
double getDSTN(const DegreeSequence& ds) {
std::vector<std::vector<double>> vals(ds.size());
for (auto& v : vals) {
v.resize(ds.size(), 0);
}
auto D = 0u;
for (auto d : ds)
D += d;
double factor = 1.0 / double(D);
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
vals[i][j] = 1.0 - std::exp(-(ds[i] * ds[j] * factor));
}
}
double result = 0.0;
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
for (auto k = j + 1; k < ds.size(); ++k) {
result += vals[i][j] * vals[j][k] * vals[i][k];
}
}
}
return result;
}
int main(int argc, char* argv[]) {
// Simulation parameters
const int numVerticesMin = 1000;
const int numVerticesMax = 10000;
const int numVerticesStep = 1000;
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
//const int totalDegreeSamples = 5000;
auto getMixingTime = [](int n, float tau) {
return int(50.0f * (50.0f - 30.0f * (tau - 2.0f)) * n);
};
constexpr int measurements = 10;
constexpr int measureSkip = 1000; // Take a sample every ... steps
// Output file
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata_canonical_properties.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
// Output Mathematica-style comment to indicate file contents
outfile << "(*\n";
outfile << "n from " << numVerticesMin << " to " << numVerticesMax
<< " step " << numVerticesStep << std::endl;
outfile << "tauValues: " << tauValues << std::endl;
outfile << "Canonical degree sequence.\n";
outfile << "mixingTime: 50 * (50 - 30 (tau - 2)) n\n";
outfile << "data:\n";
outfile << "1: {n,tau}\n";
outfile << "2: avgTriangles\n";
outfile << "3: edges\n";
outfile << "4: dstn\n";
outfile << "5: { HH A, HH L, average A, average L } where for each there is (average of) {lambda1 , lambda1 - lambda2, lambda1/lambda2}\n";
outfile << "6: switching successrate after mixing\n";
outfile << "7: initial HH triangles\n";
outfile << "*)" << std::endl;
// Mathematica does not accept normal scientific notation
outfile << std::fixed;
outfile << '{';
bool outputComma = false;
Graph g;
for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
numVertices += numVerticesStep) {
for (float tau : tauValues) {
DegreeSequence ds;
generateCanonicalPowerlawGraph(numVertices, tau, g, ds);
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running (n,tau) = (" << numVertices << ',' << tau
<< "). " << std::flush;
// Mix
int mixingTime = getMixingTime(numVertices, tau);
for (int i = 0; i < mixingTime; ++i) {
chain.doMove();
}
std::cout << "Mixing done. " << std::flush;
std::array<double, 3> HHAspectrum;
std::array<double, 3> HHLspectrum;
std::array<double, 3> avgAspectrum;
std::array<double, 3> avgLspectrum;
auto getSpectralValues =
[](const std::vector<float> &s) -> std::array<double, 3> {
auto l1 = s[s.size() - 1];
auto l2 = s[s.size() - 2];
return {l1, l1 - l2, l1 / l2};
};
GraphSpectrum gs_start(g);
GraphSpectrum gs(chain.g);
HHAspectrum =
getSpectralValues(gs_start.computeAdjacencySpectrum());
HHLspectrum =
getSpectralValues(gs_start.computeLaplacianSpectrum());
long long trianglesTotal = 0;
int movesDone = 0;
avgAspectrum.fill(0);
avgLspectrum.fill(0);
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove())
++movesDone;
trianglesTotal += chain.g.countTriangles();
auto sA = getSpectralValues(gs.computeAdjacencySpectrum());
auto sL = getSpectralValues(gs.computeLaplacianSpectrum());
for (auto i = 0u; i < 3; ++i) {
avgAspectrum[i] += sA[i];
avgLspectrum[i] += sL[i];
}
}
float avgTriangles = float(trianglesTotal) / float(measurements);
float successrate =
float(movesDone) / float(measurements * measureSkip);
for (auto &f : avgAspectrum)
f /= float(measurements);
for (auto &f : avgLspectrum)
f /= float(measurements);
std::cout << "Measuring done." << std::flush;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles;
outfile << ',' << g.edgeCount();
outfile << ',' << getDSTN(ds);
outfile << ',' << '{' << HHAspectrum;
outfile << ',' << HHLspectrum;
outfile << ',' << avgAspectrum;
outfile << ',' << avgLspectrum;
outfile << '}';
outfile << ',' << successrate;
outfile << ',' << g.countTriangles();
outfile << '}' << std::flush;
std::cout << "Output done." << std::endl;
}
}
outfile << '}';
return 0;
}
|