Files @ 5cec3a409ef3
Branch filter:

Location: AENC/switchchain/triangle_creation_frequency_plots.m

5cec3a409ef3 1.7 KiB application/vnd.wolfram.mathematica.package Show Annotation Show as Raw Download as Raw
Tom Bannink
Add triangle creation frequency plots
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*Data import*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: #triangles time sequence
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


(* ::Section:: *)
(*Triangle creation frequencies*)


(* ::Subsection:: *)
(*Plot triangle count over "time" in Markov chain instances*)


numPlots=20;
selectedData=gdata[[1,1]][[-numPlots;;-1]];
measureSkip=1;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=30000; *)
skipPts=Max[1,Round[maxTime/500]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


differences=Map[Differences[#[[2,25000;;-1]]]&,gdata,{3}];


(* Take three runs of each *)
histograms=Map[Histogram[#[[{1,6,11,16}]],{-20,20,1},"LogCount",ImageSize->300]&,differences,{2}];


TableForm[histograms,TableHeadings->{taulabels,nlabels}]