Files
@ 5da240b7cac5
Branch filter:
Location: AENC/switchchain/cpp/switchchain.cpp
5da240b7cac5
9.5 KiB
text/x-c++src
Add GCM1 code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | #include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}
class SwitchChain {
public:
SwitchChain()
: mt(std::random_device{}()), permutationDistribution(0.5)
// permutationDistribution(0, 2)
{
// random_device uses hardware entropy if available
// std::random_device rd;
// mt.seed(rd());
}
~SwitchChain() {}
bool initialize(const Graph& gstart) {
if (gstart.edgeCount() == 0)
return false;
g = gstart;
edgeDistribution.param(
std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
return true;
}
bool doMove() {
int e1index, e2index;
int timeout = 0;
// Keep regenerating while conflicting edges
do {
e1index = edgeDistribution(mt);
e2index = edgeDistribution(mt);
if (++timeout % 100 == 0) {
std::cerr << "Warning: sampled " << timeout
<< " random edges but they keep conflicting.\n";
}
} while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
// Consider one of the three possible permutations
// 1) e1.u - e1.v and e2.u - e2.v (original)
// 2) e1.u - e2.u and e1.v - e2.v
// 3) e1.u - e2.v and e1.v - e2.u
bool switchType = permutationDistribution(mt);
return g.exchangeEdges(e1index, e2index, switchType);
}
Graph g;
std::mt19937 mt;
std::uniform_int_distribution<> edgeDistribution;
//std::uniform_int_distribution<> permutationDistribution;
std::bernoulli_distribution permutationDistribution;
};
//
// Assumes degree sequence does NOT contain any zeroes!
//
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, auto& rng, bool method2) {
// Similar to Havel-Hakimi but instead of pairing up with the highest ones
// that remain, simply pair up with random ones
unsigned int n = ds.size();
// degree, vertex index
std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
for (unsigned int i = 0; i < n; ++i) {
degrees[i].first = ds[i];
degrees[i].second = i;
}
// Clear the graph
g.reset(n);
while (!degrees.empty()) {
std::shuffle(degrees.begin(), degrees.end(), rng);
// Get the highest degree:
// If there are multiple highest ones, we pick a random one,
// ensured by the shuffle.
// The shuffle is needed anyway for the remaining part
unsigned int dmax = 0;
auto uIter = degrees.begin();
for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
if (iter->first >= dmax) {
dmax = iter->first;
uIter = iter;
}
}
if (dmax > degrees.size() - 1)
return false;
unsigned int u = uIter->second;
if (method2) {
// Take the highest degree out of the vector
degrees.erase(uIter);
// Now assign randomly to the remaining vertices
// Since its shuffled, we can pick the first 'dmax' ones
auto vIter = degrees.begin();
while (dmax--) {
if (vIter->first == 0)
std::cerr << "ERROR in GCM2.\n";
if (!g.addEdge({u, vIter->second}))
std::cerr << "ERROR. Could not add edge in GCM2.\n";
vIter->first--;
if (vIter->first == 0)
vIter = degrees.erase(vIter);
else
vIter++;
}
} else {
// Pair with a random vertex that is not u itself
std::uniform_int_distribution<> distr(0, degrees.size() - 2);
auto vIter = degrees.begin() + distr(rng);
if (vIter == uIter)
vIter++;
// pair u to v
if (vIter->first == 0)
std::cerr << "ERROR in GCM1.\n";
if (!g.addEdge({uIter->second, vIter->second}))
std::cerr << "ERROR. Could not add edge in GCM1.\n";
// Purge anything with degree zero
// Be careful with invalidating the other iterator!
// Degree of u is always greater or equal to the degree of v
if (dmax == 1) {
// Remove both
if (vIter > uIter) {
degrees.erase(vIter);
degrees.erase(uIter);
} else {
degrees.erase(uIter);
degrees.erase(vIter);
}
} else {
// Remove only v if it reaches zero
vIter->first--;
if (vIter->first == 0)
degrees.erase(vIter);
}
//degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
// [](auto x) { return x.first == 0; }));
}
}
return true;
}
int main() {
// Generate a random degree sequence
std::mt19937 rng(std::random_device{}());
// Goal:
// Degrees follow a power-law distribution with some parameter tau
// Expect: #tri = const * n^{ something }
// The goal is to find the 'something' by finding the number of triangles
// for different values of n and tau
float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f};
Graph g;
Graph g2;
std::ofstream outfile("graphdata.m");
outfile << '{';
bool outputComma = false;
for (int numVertices = 200; numVertices <= 1000; numVertices += 100) {
for (float tau : tauValues) {
DegreeSequence ds(numVertices);
powerlaw_distribution degDist(tau, 1, numVertices);
//std::poisson_distribution<> degDist(12);
// For a single n,tau take samples over several instances of
// the degree distribution
for (int degreeSample = 0; degreeSample < 500; ++degreeSample) {
// Generate a graph
// might require multiple tries
for (int i = 1; ; ++i) {
std::generate(ds.begin(), ds.end(),
[°Dist, &rng] { return degDist(rng); });
// First make the sum even
unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
if (sum % 2) {
continue;
// Can we do this: ??
ds.back()++;
}
if (g.createFromDegreeSequence(ds))
break;
// When 10 tries have not worked, output a warning
if (i % 10 == 0) {
std::cerr << "Warning: could not create graph from "
"degree sequence. Trying again...\n";
}
}
//
// Test the greedy configuration model success rate
//
std::vector<int> greedyTriangles;
int successrate = 0;
for (int i = 0; i < 100; ++i) {
if (greedyConfigurationModel(ds, g2, rng, true)) {
++successrate;
greedyTriangles.push_back(g2.countTriangles());
}
}
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
//int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
//constexpr int measurements = 50;
//constexpr int measureSkip =
// 200; // Take a sample every ... steps
int mixingTime = 0;
constexpr int measurements = 10000;
constexpr int measureSkip = 1;
int movesDone = 0;
int triangles[measurements];
for (int i = 0; i < mixingTime; ++i) {
if (chain.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove())
++movesDone;
triangles[i] = chain.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%)." << std::endl;
if (outputComma)
outfile << ',';
outputComma = true;
std::sort(ds.begin(), ds.end());
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << triangles << ',' << ds;
outfile << ',' << greedyTriangles << '}' << std::flush;
}
}
}
outfile << '}';
return 0;
}
|