Files
@ 634d9c963986
Branch filter:
Location: AENC/switchchain/cpp/switchchain_exponent.cpp
634d9c963986
4.2 KiB
text/x-c++src
Add insertion sort for HH and timed time-evols
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | #include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "graph_spectrum.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
int main(int argc, char* argv[]) {
// Simulation parameters
const int numVerticesMin = 1000;
const int numVerticesMax = 5000;
const int numVerticesStep = 1000;
//float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f};
const int totalDegreeSamples = 1000;
auto getMixingTime = [](int n, float tau) {
return int(50.0f * (50.0f - 5.0f * (tau - 2.0f)) * n);
};
auto getMeasurements = [](int n, float tau) {
(void)n;
(void)tau;
return 500;
};
auto getMeasureSkip = [](int n, float tau) {
(void)tau;
return 30 * n; // Take a sample every ... steps
};
// Output file
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata_exponent.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
// Output Mathematica-style comment to indicate file contents
outfile << "(*\n";
outfile << "n from " << numVerticesMin << " to " << numVerticesMax
<< " step " << numVerticesStep << std::endl;
outfile << "tauValues: " << tauValues << std::endl;
outfile << "degreeSamples: " << totalDegreeSamples << std::endl;
outfile << "mixingTime: 50 * (50 - 5 (tau - 2)) n\n";
outfile << "measurements: 500\n";
outfile << "measureSkip: 30 n\n";
outfile << "data:\n";
outfile << "1: {n,tau}\n";
outfile << "2: avgTriangles\n";
outfile << "*)" << std::endl;
// Mathematica does not accept normal scientific notation
outfile << std::fixed;
outfile << '{' << '\n';
bool outputComma = false;
std::mt19937 rng(std::random_device{}());
Graph g;
for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
numVertices += numVerticesStep) {
for (float tau : tauValues) {
// For a single n,tau take samples over several instances of
// the degree distribution.
for (int degreeSample = 0; degreeSample < totalDegreeSamples;
++degreeSample) {
DegreeSequence ds;
generatePowerlawGraph(numVertices, tau, g, ds, rng);
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running (n,tau) = (" << numVertices << ','
<< tau << "). " << std::flush;
// Mix
int mixingTime = getMixingTime(numVertices, tau);
for (int i = 0; i < mixingTime; ++i) {
chain.doMove();
}
std::cout << "Mixing done. " << std::flush;
long long trianglesTotal = 0;
//chain.g.getTrackedTriangles() = chain.g.countTriangles();
int measurements = getMeasurements(numVertices, tau);
int measureSkip = getMeasureSkip(numVertices, tau);
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
chain.doMove(false);
//trianglesTotal += chain.g.getTrackedTriangles();
trianglesTotal += chain.g.countTriangles();
}
float avgTriangles =
float(trianglesTotal) / float(measurements);
std::cout << "Measuring done. " << std::flush;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles;
outfile << '}' << std::flush;
std::cout << "Output done." << std::endl;
}
}
}
outfile << '\n' << '}';
return 0;
}
|