Files @ 6b337b787a3d
Branch filter:

Location: AENC/switchchain/cpp/switchchain.cpp

Tom Bannink
Add dataset for successrates non time evol
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <array>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}

class SwitchChain {
  public:
    SwitchChain()
        : mt(std::random_device{}()), permutationDistribution(0.5)
    // permutationDistribution(0, 2)
    {
        // random_device uses hardware entropy if available
        // std::random_device rd;
        // mt.seed(rd());
    }
    ~SwitchChain() {}

    bool initialize(const Graph& gstart) {
        if (gstart.edgeCount() == 0)
            return false;
        g = gstart;
        edgeDistribution.param(
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
        return true;
    }

    bool doMove() {
        int e1index, e2index;
        int timeout = 0;
        // Keep regenerating while conflicting edges
        do {
            e1index = edgeDistribution(mt);
            e2index = edgeDistribution(mt);
            if (++timeout % 100 == 0) {
                std::cerr << "Warning: sampled " << timeout
                          << " random edges but they keep conflicting.\n";
            }
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));

        // Consider one of the three possible permutations
        // 1) e1.u - e1.v and e2.u - e2.v (original)
        // 2) e1.u - e2.u and e1.v - e2.v
        // 3) e1.u - e2.v and e1.v - e2.u
        bool switchType = permutationDistribution(mt);
        return g.exchangeEdges(e1index, e2index, switchType);
    }

    Graph g;
    std::mt19937 mt;
    std::uniform_int_distribution<> edgeDistribution;
    //std::uniform_int_distribution<> permutationDistribution;
    std::bernoulli_distribution permutationDistribution;
};

void getTriangleDegrees(const Graph& g) {
    std::vector<std::array<std::size_t,3>> trids;
    const auto& adj = g.getAdj();
    int triangles = 0;
    for (auto& v : adj) {
        for (unsigned int i = 0; i < v.size(); ++i) {
            for (unsigned int j = i + 1; j < v.size(); ++j) {
                if (g.hasEdge({v[i], v[j]})) {
                    ++triangles;
                    std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
                                                     adj[v[j]].size()}};
                    std::sort(ds.begin(), ds.end());
                    trids.push_back(ds);
                }
            }
        }
    }
    assert(triangles % 3 == 0);
    return;
}

//
// Assumes degree sequence does NOT contain any zeroes!
//
// method2 = true  -> take highest degree and finish its pairing completely
// method2 = false -> take new highest degree after every pairing
template <typename RNG>
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
    // that remain, simply pair up with random ones
    unsigned int n = ds.size();

    // degree, vertex index
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
    for (unsigned int i = 0; i < n; ++i) {
        degrees[i].first = ds[i];
        degrees[i].second = i;
    }

    std::vector<decltype(degrees.begin())> available;
    available.reserve(n);

    // Clear the graph
    g.reset(n);

    while (!degrees.empty()) {
        std::shuffle(degrees.begin(), degrees.end(), rng);
        // Get the highest degree:
        // If there are multiple highest ones, we pick a random one,
        // ensured by the shuffle.
        // The shuffle is needed anyway for the remaining part
        unsigned int dmax = 0;
        auto uIter = degrees.begin();
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
            if (iter->first >= dmax) {
                dmax = iter->first;
                uIter = iter;
            }
        }

        if (dmax > degrees.size() - 1)
            return false;

        if (dmax == 0) {
            std::cerr << "ERROR 1 in GCM.\n";
        }

        unsigned int u = uIter->second;

        if (method2) {
            // Take the highest degree out of the vector
            degrees.erase(uIter);

            // Now assign randomly to the remaining vertices
            // Since its shuffled, we can pick the first 'dmax' ones
            auto vIter = degrees.begin();
            while (dmax--) {
                if (vIter->first == 0)
                    std::cerr << "ERROR in GCM2.\n";
                if (!g.addEdge({u, vIter->second}))
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
                vIter->first--;
                if (vIter->first == 0)
                    vIter = degrees.erase(vIter);
                else
                    vIter++;
            }
        } else {
            // Pair with a random vertex that is not u itself and to which
            // u has not paired yet!
            available.clear();
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
                if (iter->second != u && !g.hasEdge({u, iter->second}))
                    available.push_back(iter);
            }
            if (available.empty())
                return false;
            std::uniform_int_distribution<> distr(0, available.size() - 1);
            auto vIter = available[distr(rng)];
            // pair u to v
            if (vIter->first == 0)
                std::cerr << "ERROR 2 in GCM1.\n";
            if (!g.addEdge({u, vIter->second}))
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
            // Purge anything with degree zero
            // Be careful with invalidating the other iterator!
            // Degree of u is always greater or equal to the degree of v
            if (dmax == 1) {
                // Remove both
                // Erasure invalidates all iterators AFTER the erased one
                if (vIter > uIter) {
                    degrees.erase(vIter);
                    degrees.erase(uIter);
                } else {
                    degrees.erase(uIter);
                    degrees.erase(vIter);
                }
            } else {
                // Remove only v if it reaches zero
                uIter->first--;
                vIter->first--;
                if (vIter->first == 0)
                    degrees.erase(vIter);
            }
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
            //                             [](auto x) { return x.first == 0; }));
        }
    }
    return true;
}

int main(int argc, char* argv[]) {
    // Generate a random degree sequence
    std::mt19937 rng(std::random_device{}());

    // Goal:
    // Degrees follow a power-law distribution with some parameter tau
    // Expect:  #tri = const * n^{ something }
    // The goal is to find the 'something' by finding the number of triangles
    // for different values of n and tau
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};

    Graph g;
    Graph g1;
    Graph g2;

    std::ofstream outfile;

    if (argc >= 2)
        outfile.open(argv[1]);
    else   
        outfile.open("graphdata.m");

    if (!outfile.is_open()) {
        std::cout << "ERROR: Could not open output file.\n";
        return 1;
    }

    outfile << '{';
    bool outputComma = false;

    for (int numVertices = 500; numVertices <= 500; numVertices += 1000) {
        for (float tau : tauValues) {

            DegreeSequence ds(numVertices);
            powerlaw_distribution degDist(tau, 1, numVertices);
            //std::poisson_distribution<> degDist(12);

            // For a single n,tau take samples over several instances of
            // the degree distribution.
            // 500 samples seems to give reasonable results
            for (int degreeSample = 0; degreeSample < 5; ++degreeSample) {
                // Generate a graph
                // might require multiple tries
                for (int i = 1; ; ++i) {
                    std::generate(ds.begin(), ds.end(),
                                  [&degDist, &rng] { return degDist(rng); });
                    // First make the sum even
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
                    if (sum % 2) {
                        continue;
                        // Can we do this: ??
                        ds.back()++;
                    }

                    if (g.createFromDegreeSequence(ds))
                        break;

                    // When 10 tries have not worked, output a warning
                    if (i % 10 == 0) {
                        std::cerr << "Warning: could not create graph from "
                                     "degree sequence. Trying again...\n";
                    }
                }

#if 0
                //
                // Test the GCM1 and GCM2 success rate
                //
                std::vector<int> greedyTriangles1;
                std::vector<int> greedyTriangles2;
                int successrate1 = 0;
                int successrate2 = 0;
                for (int i = 0; i < 100; ++i) {
                    Graph gtemp;
                    // Take new highest degree every time
                    if (greedyConfigurationModel(ds, gtemp, rng, false)) {
                        ++successrate1;
                        greedyTriangles1.push_back(gtemp.countTriangles());
                        g1 = gtemp;
                    }
                    // Finish all pairings of highest degree first
                    if (greedyConfigurationModel(ds, gtemp, rng, true)) {
                        ++successrate2;
                        greedyTriangles2.push_back(gtemp.countTriangles());
                        g2 = gtemp;
                    }
                }
#endif

                for (int i = 1; i < 5; ++i) {

                SwitchChain chain;
                if (!chain.initialize(g)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    return 1;
                }

                std::cout << "Running n = " << numVertices << ", tau = " << tau
                          << ". \t" << std::flush;

                //int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
                //constexpr int measurements = 50;
                //constexpr int measureSkip =
                //    200; // Take a sample every ... steps
                int mixingTime = 0;
                constexpr int measurements = 50000;
                constexpr int measureSkip = 1;


                int movesTotal = 0;
                int movesSuccess = 0;

                int triangles[measurements];

                for (int i = 0; i < mixingTime; ++i) {
                    ++movesTotal;
                    if (chain.doMove()) {
                        ++movesSuccess;
                    }
                }

                std::vector<int> successRates;
                successRates.reserve(measurements * measureSkip);
                int successrate = 0;
                for (int i = 0; i < measurements; ++i) {
                    for (int j = 0; j < measureSkip; ++j) {
                        ++movesTotal;
                        if (chain.doMove()) {
                            ++movesSuccess;
                            ++successrate;
                        }
                    }
                    triangles[i] = chain.g.countTriangles();

                    if ((i+1) % 100 == 0) {
                        successRates.push_back(successrate);
                        successrate = 0;
                    }
                }

                std::cout << '('
                          << 100.0f * float(movesSuccess) / float(movesTotal)
                          << "% successrate). " << std::flush;
                // std::cout << std::endl;

                if (outputComma)
                    outfile << ',' << '\n';
                outputComma = true;

                std::sort(ds.begin(), ds.end());
                outfile << '{' << '{' << numVertices << ',' << tau << '}';
                outfile << ',' << triangles;
                outfile << ',' << ds;
#if 0
                outfile << ',' << greedyTriangles1;
                outfile << ',' << greedyTriangles2;

                SwitchChain chain1, chain2;
                if (chain1.initialize(g1)) {
                    movesDone = 0;
                    SwitchChain& c = chain1;
                    for (int i = 0; i < mixingTime; ++i) {
                        if (c.doMove())
                            ++movesDone;
                    }
                    for (int i = 0; i < measurements; ++i) {
                        for (int j = 0; j < measureSkip; ++j)
                            if (c.doMove())
                                ++movesDone;
                        triangles[i] = c.g.countTriangles();
                    }

                    std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
                        << " moves succeeded ("
                        << 100.0f * float(movesDone) /
                        float(mixingTime + measurements * measureSkip)
                        << "%).";

                    outfile << ',' << triangles;
                }
                if (chain2.initialize(g2)) {
                    movesDone = 0;
                    SwitchChain& c = chain2;
                    for (int i = 0; i < mixingTime; ++i) {
                        if (c.doMove())
                            ++movesDone;
                    }
                    for (int i = 0; i < measurements; ++i) {
                        for (int j = 0; j < measureSkip; ++j)
                            if (c.doMove())
                                ++movesDone;
                        triangles[i] = c.g.countTriangles();
                    }

                    std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
                        << " moves succeeded ("
                        << 100.0f * float(movesDone) /
                        float(mixingTime + measurements * measureSkip)
                        << "%).";

                    outfile << ',' << triangles;
                }
#endif

                outfile << ',' << successRates;

                outfile << '}' << std::flush;

                std::cout << std::endl;
                }
            }
        }
    }
    outfile << '}';
    return 0;
}