Files
@ 6b337b787a3d
Branch filter:
Location: AENC/switchchain/cpp/switchchain_dsp.cpp
6b337b787a3d
6.6 KiB
text/x-c++src
Add dataset for successrates non time evol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | #include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}
class SwitchChain {
public:
SwitchChain()
: mt(std::random_device{}()), permutationDistribution(0.5)
// permutationDistribution(0, 2)
{
// random_device uses hardware entropy if available
// std::random_device rd;
// mt.seed(rd());
}
~SwitchChain() {}
bool initialize(const Graph& gstart) {
if (gstart.edgeCount() == 0)
return false;
g = gstart;
edgeDistribution.param(
std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
return true;
}
bool doMove() {
int e1index, e2index;
int timeout = 0;
// Keep regenerating while conflicting edges
do {
e1index = edgeDistribution(mt);
e2index = edgeDistribution(mt);
if (++timeout % 100 == 0) {
std::cerr << "Warning: sampled " << timeout
<< " random edges but they keep conflicting.\n";
}
} while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
// Consider one of the three possible permutations
// 1) e1.u - e1.v and e2.u - e2.v (original)
// 2) e1.u - e2.u and e1.v - e2.v
// 3) e1.u - e2.v and e1.v - e2.u
bool switchType = permutationDistribution(mt);
return g.exchangeEdges(e1index, e2index, switchType);
}
Graph g;
std::mt19937 mt;
std::uniform_int_distribution<> edgeDistribution;
//std::uniform_int_distribution<> permutationDistribution;
std::bernoulli_distribution permutationDistribution;
};
double getProperty(const DegreeSequence& ds) {
std::vector<std::vector<double>> vals(ds.size());
for (auto& v : vals) {
v.resize(ds.size(), 0);
}
auto D = 0u;
for (auto d : ds)
D += d;
double factor = 1.0 / double(D);
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
vals[i][j] = 1.0 - std::exp(-(ds[i] * ds[j] * factor));
}
}
double result = 0.0;
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
for (auto k = j + 1; k < ds.size(); ++k) {
result += vals[i][j] * vals[j][k] * vals[i][k];
}
}
}
return result;
}
int main() {
// Generate a random degree sequence
std::mt19937 rng(std::random_device{}());
// Goal:
// Degrees follow a power-law distribution with some parameter tau
// Expect: #tri = const * n^{ something }
// The goal is to find the 'something' by finding the number of triangles
// for different values of n and tau
float tauValues[] = {2.1f, 2.5f, 2.9f};
Graph g;
Graph g1;
Graph g2;
std::ofstream outfile("graphdata_dsp.m");
outfile << '{';
bool outputComma = false;
for (int numVertices = 1000; numVertices <= 1000; numVertices += 1000) {
for (float tau : tauValues) {
DegreeSequence ds(numVertices);
powerlaw_distribution degDist(tau, 1, numVertices);
//std::poisson_distribution<> degDist(12);
// For a single n,tau take samples over several instances of
// the degree distribution.
// 500 samples seems to give reasonable results
for (int degreeSample = 0; degreeSample < 2000; ++degreeSample) {
// Generate a graph
// might require multiple tries
for (int i = 1; ; ++i) {
std::generate(ds.begin(), ds.end(),
[°Dist, &rng] { return degDist(rng); });
// First make the sum even
unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
if (sum % 2) {
continue;
// Can we do this: ??
ds.back()++;
}
if (g.createFromDegreeSequence(ds))
break;
// When 10 tries have not worked, output a warning
if (i % 10 == 0) {
std::cerr << "Warning: could not create graph from "
"degree sequence. Trying again...\n";
}
}
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running n = " << numVertices << ", tau = " << tau
<< ". \t" << std::flush;
int mixingTime = 32*(32.0f - 10.0f*(tau - 2.0f)) * numVertices; //40000;
constexpr int measurements = 50;
constexpr int measureSkip =
200; // Take a sample every ... steps
int movesDone = 0;
long long trianglesTotal = 0;
for (int i = 0; i < mixingTime; ++i) {
if (chain.doMove())
++movesDone;
}
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove())
++movesDone;
trianglesTotal += chain.g.countTriangles();
}
std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
<< " moves succeeded ("
<< 100.0f * float(movesDone) /
float(mixingTime + measurements * measureSkip)
<< "%).";
std::cout << std::flush;
//std::cout << std::endl;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
float avgTriangles =
float(trianglesTotal) / float(measurements);
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles;
outfile << ',' << getProperty(ds) << '}' << std::flush;
std::cout << std::endl;
}
}
}
outfile << '}';
return 0;
}
|