Files
@ 7dbca3656ee1
Branch filter:
Location: AENC/switchchain/triangle_creation_frequency_plots.m
7dbca3656ee1
7.0 KiB
application/vnd.wolfram.mathematica.package
Add proper creationfreq simulation and plots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: #triangles time sequence
3: degree sequence
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
(* Get the runs that have the same degree sequence *)
gdata2=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&,#[[3]]&}];
(* gdata[[ tau index, n index, ds run index, MC run index , datatype index ]] *)
(* ::Section:: *)
(*Triangle creation frequencies*)
(* ::Subsection:: *)
(*Plot triangle count over "time" in Markov chain instances*)
numPlots=20;
selectedData=gdata[[1,1]][[-numPlots;;-1]];
measureSkip=1;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=30000; *)
skipPts=Max[1,Round[maxTime/500]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)
differences=Map[Differences[#[[2,25000;;-1]]]&,gdata2,{4}];
differences=Map[Flatten,differences,{3}];
(* For each (n,tau) take 2 degree sequences *)
histograms1=Map[Histogram[#[[{2,1}]],{-25.5,25.5,1},{"Log","Probability"},ImageSize->280]&,differences,{2}];
(* For each (n,tau) take the average over all degree sequences *)
histograms2=Map[Histogram[Flatten[#],{-3.5,3.5,1},"Probability",PlotRange->{0,1},LabelingFunction->(Placed[NumberForm[#,{2,3}],Above]&),ImageSize->280]&,differences,{2}];
TableForm[histograms2,TableHeadings->{taulabels,nlabels}]
{h1,h2,h3}={
Show[histograms1[[2]],PlotLabel->"n=1000, \[Tau]=2.2"],
Show[histograms1[[5]],PlotLabel->"n=1000, \[Tau]=2.5"],
Show[histograms1[[8]],PlotLabel->"n=1000, \[Tau]=2.8"]};
{h1zoomed,h2zoomed,h3zoomed}={
Show[histograms2[[2]],PlotLabel->"n=1000, \[Tau]=2.2"],
Show[histograms2[[5]],PlotLabel->"n=1000, \[Tau]=2.5"],
Show[histograms2[[8]],PlotLabel->"n=1000, \[Tau]=2.8"]};
hcol=GraphicsGrid[Transpose[{{h1,h2,h3},{h1zoomed,h2zoomed,h3zoomed}}]]
Export[NotebookDirectory[]<>"plots/triangle_creation_frequencies_log.pdf",hcol]
(* ::Section:: *)
(*Canonical dataset*)
(* Taken from stackoverflow *)
ClearAll[chartColors];
chartColors::usage="plotColors[plotType,plotTheme] gives a list of the colors used in a plot when several curves are drawn. Here plotType is, for example, Plot or ListLogPlot while plotTheme may be \"Scientific\", \"Classic\" etc.";
chartColors[chartType_,plotTheme_]:=("ChartDefaultStyle"/.(Method/.Charting`ResolvePlotTheme[plotTheme,chartType]))/.Directive[x_,__]:>x
cl1=chartColors[Histogram,$PlotTheme]
gsraw=Import[NotebookDirectory[]<>"data/graphdata_canonical_creationfreqs.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=gsraw;
(* Data format: *)
(* gdata[[ tau index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: {{delta1, freq1}, {delta2, freq2}, ... }
3: {successful moves, move attemps}
*)
ticks={{1,1}}~Join~Map[{10^-#,Superscript[10,-#]}&,Range[1,9]];
histogramData=Map[WeightedData[#[[All,1]],#[[All,2]]]&,gdata[[All,2]]];
largeHistogram=Histogram[histogramData,{-100-0.5,100+0.5,1},{"Log","Probability"},
PlotRange->{Automatic,Automatic},
ChartLegends->Placed[{"\[Tau] = 2.1","\[Tau] = 2.5","\[Tau] = 2.9"},Scaled[{0.8,0.75}]],
ChartStyle->cl1,
FrameTicks->{{ticks,None},{Automatic,None}},
PlotLabel->"n = 10000",
FrameLabel->{"net triangles created by a switch","Probability"},
Frame->True,ImageSize->265,AspectRatio->1]
Export[NotebookDirectory[]<>"plots/triangle_creation_frequencies_large.pdf",largeHistogram]
createCalloutPlotNew[freqs_,bottomTicks_,epilog_,color_]:=Module[{total,plotrange,ticks,h,probs,cpos,callouts,llp,range=501},
total=Total[freqs[[All,2]]];
plotrange={{-7,7},{freqs[[Floor[Length[freqs]/2]-3,2]]/total,0.3+Max[freqs[[All,2]]]/total}};
ticks={{1,1}}~Join~Map[{10^-#,Superscript[10,-#]}&,Range[1,4]];
h=Histogram[WeightedData[freqs[[All,1]],freqs[[All,2]]],{-range-0.5,range+0.5,1},{"Log","Probability"},
PlotRange->plotrange,
PlotRangeClipping->True,
ChartStyle->color,
ImagePadding->{{1,30},{If[bottomTicks==True,15,0.5],0.5}},
Epilog->epilog,
FrameTicks->{{None,ticks},{bottomTicks,None}},
Frame->True,ImageSize->145];
probs=Select[freqs,Abs[#[[1]]]<=2&];
cpos[i_]:=\!\(\*
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{"Before",
RowBox[{"i", "<", "0"}]},
{"After",
RowBox[{"i", ">", "0"}]},
{"Automatic", "True"}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {Offset[0.27999999999999997`], {Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {Offset[0.2], {Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {Offset[0.27999999999999997`], {Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {Offset[0.2], {Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False]\);
callouts=Map[Callout[{#[[1]],#[[2]]/total},NumberForm[N[#[[2]]/total],{2,3}],cpos[#[[1]]]]&,probs];
llp=ListLogPlot[callouts,PlotStyle->None,PlotRange->plotrange];
Show[h,llp]
]
histograms3={
createCalloutPlotNew[gdata[[1,2]],None,Text["\[Tau] = 2.1",Scaled[{0.85,0.9}]],cl1[[1]]],
createCalloutPlotNew[gdata[[2,2]],None,Text["\[Tau] = 2.5",Scaled[{0.85,0.9}]],cl1[[2]]],
createCalloutPlotNew[gdata[[3,2]],True,Text["\[Tau] = 2.9",Scaled[{0.85,0.9}]],cl1[[3]]]
};
plotcol=Column[histograms3,Spacings->0]
combiplot=Row[{largeHistogram,plotcol}]
Export[NotebookDirectory[]<>"plots/triangle_creation_frequencies_combiplot.pdf",combiplot]
|